Step |
Hyp |
Ref |
Expression |
1 |
|
fvvolioof.f |
|- ( ph -> F : A --> ( RR* X. RR* ) ) |
2 |
|
fvvolioof.x |
|- ( ph -> X e. A ) |
3 |
1
|
ffund |
|- ( ph -> Fun F ) |
4 |
1
|
fdmd |
|- ( ph -> dom F = A ) |
5 |
4
|
eqcomd |
|- ( ph -> A = dom F ) |
6 |
2 5
|
eleqtrd |
|- ( ph -> X e. dom F ) |
7 |
|
fvco |
|- ( ( Fun F /\ X e. dom F ) -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( ( vol o. (,) ) ` ( F ` X ) ) ) |
8 |
3 6 7
|
syl2anc |
|- ( ph -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( ( vol o. (,) ) ` ( F ` X ) ) ) |
9 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
10 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
11 |
9 10
|
ax-mp |
|- Fun (,) |
12 |
11
|
a1i |
|- ( ph -> Fun (,) ) |
13 |
1 2
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( RR* X. RR* ) ) |
14 |
9
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
15 |
13 14
|
eleqtrrdi |
|- ( ph -> ( F ` X ) e. dom (,) ) |
16 |
|
fvco |
|- ( ( Fun (,) /\ ( F ` X ) e. dom (,) ) -> ( ( vol o. (,) ) ` ( F ` X ) ) = ( vol ` ( (,) ` ( F ` X ) ) ) ) |
17 |
12 15 16
|
syl2anc |
|- ( ph -> ( ( vol o. (,) ) ` ( F ` X ) ) = ( vol ` ( (,) ` ( F ` X ) ) ) ) |
18 |
|
df-ov |
|- ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
19 |
18
|
a1i |
|- ( ph -> ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) = ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) ) |
20 |
|
1st2nd2 |
|- ( ( F ` X ) e. ( RR* X. RR* ) -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
21 |
13 20
|
syl |
|- ( ph -> ( F ` X ) = <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) |
22 |
21
|
eqcomd |
|- ( ph -> <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. = ( F ` X ) ) |
23 |
22
|
fveq2d |
|- ( ph -> ( (,) ` <. ( 1st ` ( F ` X ) ) , ( 2nd ` ( F ` X ) ) >. ) = ( (,) ` ( F ` X ) ) ) |
24 |
19 23
|
eqtr2d |
|- ( ph -> ( (,) ` ( F ` X ) ) = ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) |
25 |
24
|
fveq2d |
|- ( ph -> ( vol ` ( (,) ` ( F ` X ) ) ) = ( vol ` ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) ) |
26 |
8 17 25
|
3eqtrd |
|- ( ph -> ( ( ( vol o. (,) ) o. F ) ` X ) = ( vol ` ( ( 1st ` ( F ` X ) ) (,) ( 2nd ` ( F ` X ) ) ) ) ) |