Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|- ( M e/ ZZ <-> -. M e. ZZ ) |
2 |
|
df-nel |
|- ( N e/ ZZ <-> -. N e. ZZ ) |
3 |
1 2
|
orbi12i |
|- ( ( M e/ ZZ \/ N e/ ZZ ) <-> ( -. M e. ZZ \/ -. N e. ZZ ) ) |
4 |
|
ianor |
|- ( -. ( M e. ZZ /\ N e. ZZ ) <-> ( -. M e. ZZ \/ -. N e. ZZ ) ) |
5 |
|
fzf |
|- ... : ( ZZ X. ZZ ) --> ~P ZZ |
6 |
5
|
fdmi |
|- dom ... = ( ZZ X. ZZ ) |
7 |
6
|
ndmov |
|- ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = (/) ) |
8 |
4 7
|
sylbir |
|- ( ( -. M e. ZZ \/ -. N e. ZZ ) -> ( M ... N ) = (/) ) |
9 |
3 8
|
sylbi |
|- ( ( M e/ ZZ \/ N e/ ZZ ) -> ( M ... N ) = (/) ) |