Step |
Hyp |
Ref |
Expression |
1 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
1z |
|- 1 e. ZZ |
4 |
|
fzen |
|- ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
5 |
2 3 4
|
mp3an13 |
|- ( ( N - 1 ) e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
6 |
1 5
|
syl |
|- ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
7 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
8 |
7
|
a1i |
|- ( N e. ZZ -> ( 0 + 1 ) = 1 ) |
9 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
10 |
|
ax-1cn |
|- 1 e. CC |
11 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
12 |
9 10 11
|
sylancl |
|- ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) |
13 |
8 12
|
oveq12d |
|- ( N e. ZZ -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
14 |
6 13
|
breqtrd |
|- ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( 1 ... N ) ) |