| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | 1z |  |-  1 e. ZZ | 
						
							| 4 |  | fzen |  |-  ( ( 0 e. ZZ /\ ( N - 1 ) e. ZZ /\ 1 e. ZZ ) -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 5 | 2 3 4 | mp3an13 |  |-  ( ( N - 1 ) e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 6 | 1 5 | syl |  |-  ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 7 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 8 | 7 | a1i |  |-  ( N e. ZZ -> ( 0 + 1 ) = 1 ) | 
						
							| 9 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 10 |  | ax-1cn |  |-  1 e. CC | 
						
							| 11 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 12 | 9 10 11 | sylancl |  |-  ( N e. ZZ -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 13 | 8 12 | oveq12d |  |-  ( N e. ZZ -> ( ( 0 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) | 
						
							| 14 | 6 13 | breqtrd |  |-  ( N e. ZZ -> ( 0 ... ( N - 1 ) ) ~~ ( 1 ... N ) ) |