Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
fzoaddel |
|- ( ( X e. ( 0 ..^ N ) /\ 1 e. ZZ ) -> ( X + 1 ) e. ( ( 0 + 1 ) ..^ ( N + 1 ) ) ) |
3 |
1 2
|
mpan2 |
|- ( X e. ( 0 ..^ N ) -> ( X + 1 ) e. ( ( 0 + 1 ) ..^ ( N + 1 ) ) ) |
4 |
3
|
adantl |
|- ( ( N e. NN0 /\ X e. ( 0 ..^ N ) ) -> ( X + 1 ) e. ( ( 0 + 1 ) ..^ ( N + 1 ) ) ) |
5 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
6 |
5
|
oveq1i |
|- ( ( 0 + 1 ) ..^ ( N + 1 ) ) = ( 1 ..^ ( N + 1 ) ) |
7 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
8 |
|
fzval3 |
|- ( N e. ZZ -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
9 |
8
|
eqcomd |
|- ( N e. ZZ -> ( 1 ..^ ( N + 1 ) ) = ( 1 ... N ) ) |
10 |
7 9
|
syl |
|- ( N e. NN0 -> ( 1 ..^ ( N + 1 ) ) = ( 1 ... N ) ) |
11 |
6 10
|
eqtrid |
|- ( N e. NN0 -> ( ( 0 + 1 ) ..^ ( N + 1 ) ) = ( 1 ... N ) ) |
12 |
11
|
eleq2d |
|- ( N e. NN0 -> ( ( X + 1 ) e. ( ( 0 + 1 ) ..^ ( N + 1 ) ) <-> ( X + 1 ) e. ( 1 ... N ) ) ) |
13 |
12
|
adantr |
|- ( ( N e. NN0 /\ X e. ( 0 ..^ N ) ) -> ( ( X + 1 ) e. ( ( 0 + 1 ) ..^ ( N + 1 ) ) <-> ( X + 1 ) e. ( 1 ... N ) ) ) |
14 |
4 13
|
mpbid |
|- ( ( N e. NN0 /\ X e. ( 0 ..^ N ) ) -> ( X + 1 ) e. ( 1 ... N ) ) |