| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | 3z |  |-  3 e. ZZ | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 |  | 3re |  |-  3 e. RR | 
						
							| 6 |  | 3pos |  |-  0 < 3 | 
						
							| 7 | 4 5 6 | ltleii |  |-  0 <_ 3 | 
						
							| 8 |  | eluz2 |  |-  ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) | 
						
							| 9 | 2 3 7 8 | mpbir3an |  |-  3 e. ( ZZ>= ` 0 ) | 
						
							| 10 | 1 9 | eqeltri |  |-  ( 2 + 1 ) e. ( ZZ>= ` 0 ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 |  | 4z |  |-  4 e. ZZ | 
						
							| 13 |  | 2re |  |-  2 e. RR | 
						
							| 14 |  | 4re |  |-  4 e. RR | 
						
							| 15 |  | 2lt4 |  |-  2 < 4 | 
						
							| 16 | 13 14 15 | ltleii |  |-  2 <_ 4 | 
						
							| 17 |  | eluz2 |  |-  ( 4 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 4 e. ZZ /\ 2 <_ 4 ) ) | 
						
							| 18 | 11 12 16 17 | mpbir3an |  |-  4 e. ( ZZ>= ` 2 ) | 
						
							| 19 |  | fzsplit2 |  |-  ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 4 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) ) | 
						
							| 20 | 10 18 19 | mp2an |  |-  ( 0 ... 4 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) | 
						
							| 21 |  | fz0tp |  |-  ( 0 ... 2 ) = { 0 , 1 , 2 } | 
						
							| 22 | 1 | oveq1i |  |-  ( ( 2 + 1 ) ... 4 ) = ( 3 ... 4 ) | 
						
							| 23 |  | df-4 |  |-  4 = ( 3 + 1 ) | 
						
							| 24 | 23 | oveq2i |  |-  ( 3 ... 4 ) = ( 3 ... ( 3 + 1 ) ) | 
						
							| 25 |  | fzpr |  |-  ( 3 e. ZZ -> ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } ) | 
						
							| 26 | 3 25 | ax-mp |  |-  ( 3 ... ( 3 + 1 ) ) = { 3 , ( 3 + 1 ) } | 
						
							| 27 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 28 | 27 | preq2i |  |-  { 3 , ( 3 + 1 ) } = { 3 , 4 } | 
						
							| 29 | 24 26 28 | 3eqtri |  |-  ( 3 ... 4 ) = { 3 , 4 } | 
						
							| 30 | 22 29 | eqtri |  |-  ( ( 2 + 1 ) ... 4 ) = { 3 , 4 } | 
						
							| 31 | 21 30 | uneq12i |  |-  ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 4 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) | 
						
							| 32 | 20 31 | eqtri |  |-  ( 0 ... 4 ) = ( { 0 , 1 , 2 } u. { 3 , 4 } ) |