| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | 3z |  |-  3 e. ZZ | 
						
							| 4 |  | 0re |  |-  0 e. RR | 
						
							| 5 |  | 3re |  |-  3 e. RR | 
						
							| 6 |  | 3pos |  |-  0 < 3 | 
						
							| 7 | 4 5 6 | ltleii |  |-  0 <_ 3 | 
						
							| 8 |  | eluz2 |  |-  ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) | 
						
							| 9 | 2 3 7 8 | mpbir3an |  |-  3 e. ( ZZ>= ` 0 ) | 
						
							| 10 | 1 9 | eqeltri |  |-  ( 2 + 1 ) e. ( ZZ>= ` 0 ) | 
						
							| 11 |  | 2z |  |-  2 e. ZZ | 
						
							| 12 |  | 5nn0 |  |-  5 e. NN0 | 
						
							| 13 | 12 | nn0zi |  |-  5 e. ZZ | 
						
							| 14 |  | 2re |  |-  2 e. RR | 
						
							| 15 |  | 5re |  |-  5 e. RR | 
						
							| 16 |  | 2lt5 |  |-  2 < 5 | 
						
							| 17 | 14 15 16 | ltleii |  |-  2 <_ 5 | 
						
							| 18 |  | eluz2 |  |-  ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) ) | 
						
							| 19 | 11 13 17 18 | mpbir3an |  |-  5 e. ( ZZ>= ` 2 ) | 
						
							| 20 |  | fzsplit2 |  |-  ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 5 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) ) | 
						
							| 21 | 10 19 20 | mp2an |  |-  ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) | 
						
							| 22 |  | fz0tp |  |-  ( 0 ... 2 ) = { 0 , 1 , 2 } | 
						
							| 23 | 1 | oveq1i |  |-  ( ( 2 + 1 ) ... 5 ) = ( 3 ... 5 ) | 
						
							| 24 |  | 3p2e5 |  |-  ( 3 + 2 ) = 5 | 
						
							| 25 | 24 | eqcomi |  |-  5 = ( 3 + 2 ) | 
						
							| 26 | 25 | oveq2i |  |-  ( 3 ... 5 ) = ( 3 ... ( 3 + 2 ) ) | 
						
							| 27 |  | fztp |  |-  ( 3 e. ZZ -> ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } ) | 
						
							| 28 | 3 27 | ax-mp |  |-  ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } | 
						
							| 29 |  | eqid |  |-  3 = 3 | 
						
							| 30 |  | id |  |-  ( 3 = 3 -> 3 = 3 ) | 
						
							| 31 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 32 | 31 | a1i |  |-  ( 3 = 3 -> ( 3 + 1 ) = 4 ) | 
						
							| 33 | 24 | a1i |  |-  ( 3 = 3 -> ( 3 + 2 ) = 5 ) | 
						
							| 34 | 30 32 33 | tpeq123d |  |-  ( 3 = 3 -> { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } ) | 
						
							| 35 | 29 34 | ax-mp |  |-  { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } | 
						
							| 36 | 26 28 35 | 3eqtri |  |-  ( 3 ... 5 ) = { 3 , 4 , 5 } | 
						
							| 37 | 23 36 | eqtri |  |-  ( ( 2 + 1 ) ... 5 ) = { 3 , 4 , 5 } | 
						
							| 38 | 22 37 | uneq12i |  |-  ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) | 
						
							| 39 | 21 38 | eqtri |  |-  ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |