Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( ( 1 ... M ) = ( 1 ... N ) -> ( # ` ( 1 ... M ) ) = ( # ` ( 1 ... N ) ) ) |
2 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
3 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
4 |
2 3
|
eqeqan12d |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( # ` ( 1 ... M ) ) = ( # ` ( 1 ... N ) ) <-> M = N ) ) |
5 |
1 4
|
syl5ib |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1 ... M ) = ( 1 ... N ) -> M = N ) ) |
6 |
|
oveq2 |
|- ( M = N -> ( 1 ... M ) = ( 1 ... N ) ) |
7 |
5 6
|
impbid1 |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( 1 ... M ) = ( 1 ... N ) <-> M = N ) ) |