Metamath Proof Explorer


Theorem fz1fzo0m1

Description: Translation of one between closed and open integer ranges. (Contributed by Thierry Arnoux, 28-Jul-2020)

Ref Expression
Assertion fz1fzo0m1
|- ( M e. ( 1 ... N ) -> ( M - 1 ) e. ( 0 ..^ N ) )

Proof

Step Hyp Ref Expression
1 elfzmlbm
 |-  ( M e. ( 1 ... N ) -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) )
2 elfzel2
 |-  ( M e. ( 1 ... N ) -> N e. ZZ )
3 fzoval
 |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) )
4 2 3 syl
 |-  ( M e. ( 1 ... N ) -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) )
5 1 4 eleqtrrd
 |-  ( M e. ( 1 ... N ) -> ( M - 1 ) e. ( 0 ..^ N ) )