Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) |
2 |
|
eqid |
|- ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) = ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) |
3 |
|
eqid |
|- ( _om i^i ( `' ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) ` ( ( # ` A ) + 1 ) ) ) = ( _om i^i ( `' ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) ` ( ( # ` A ) + 1 ) ) ) |
4 |
|
eqid |
|- OrdIso ( R , A ) = OrdIso ( R , A ) |
5 |
1 2 3 4
|
fz1isolem |
|- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |