Step |
Hyp |
Ref |
Expression |
1 |
|
fz1iso.1 |
|- G = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) |
2 |
|
fz1iso.2 |
|- B = ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) |
3 |
|
fz1iso.3 |
|- C = ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) |
4 |
|
fz1iso.4 |
|- O = OrdIso ( R , A ) |
5 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
6 |
5
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> ( # ` A ) e. NN0 ) |
7 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
8 |
|
1z |
|- 1 e. ZZ |
9 |
8 1
|
om2uzisoi |
|- G Isom _E , < ( _om , ( ZZ>= ` 1 ) ) |
10 |
|
isoeq5 |
|- ( NN = ( ZZ>= ` 1 ) -> ( G Isom _E , < ( _om , NN ) <-> G Isom _E , < ( _om , ( ZZ>= ` 1 ) ) ) ) |
11 |
9 10
|
mpbiri |
|- ( NN = ( ZZ>= ` 1 ) -> G Isom _E , < ( _om , NN ) ) |
12 |
7 11
|
ax-mp |
|- G Isom _E , < ( _om , NN ) |
13 |
|
isocnv |
|- ( G Isom _E , < ( _om , NN ) -> `' G Isom < , _E ( NN , _om ) ) |
14 |
12 13
|
ax-mp |
|- `' G Isom < , _E ( NN , _om ) |
15 |
|
nn0p1nn |
|- ( ( # ` A ) e. NN0 -> ( ( # ` A ) + 1 ) e. NN ) |
16 |
|
fvex |
|- ( `' G ` ( ( # ` A ) + 1 ) ) e. _V |
17 |
16
|
epini |
|- ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) = ( `' G ` ( ( # ` A ) + 1 ) ) |
18 |
17
|
ineq2i |
|- ( _om i^i ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) ) = ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) |
19 |
3 18
|
eqtr4i |
|- C = ( _om i^i ( `' _E " { ( `' G ` ( ( # ` A ) + 1 ) ) } ) ) |
20 |
2 19
|
isoini2 |
|- ( ( `' G Isom < , _E ( NN , _om ) /\ ( ( # ` A ) + 1 ) e. NN ) -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
21 |
14 15 20
|
sylancr |
|- ( ( # ` A ) e. NN0 -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
22 |
6 21
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( B , C ) ) |
23 |
|
nnz |
|- ( f e. NN -> f e. ZZ ) |
24 |
6
|
nn0zd |
|- ( ( R Or A /\ A e. Fin ) -> ( # ` A ) e. ZZ ) |
25 |
|
eluz |
|- ( ( f e. ZZ /\ ( # ` A ) e. ZZ ) -> ( ( # ` A ) e. ( ZZ>= ` f ) <-> f <_ ( # ` A ) ) ) |
26 |
23 24 25
|
syl2anr |
|- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( ( # ` A ) e. ( ZZ>= ` f ) <-> f <_ ( # ` A ) ) ) |
27 |
|
zleltp1 |
|- ( ( f e. ZZ /\ ( # ` A ) e. ZZ ) -> ( f <_ ( # ` A ) <-> f < ( ( # ` A ) + 1 ) ) ) |
28 |
23 24 27
|
syl2anr |
|- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f <_ ( # ` A ) <-> f < ( ( # ` A ) + 1 ) ) ) |
29 |
|
ovex |
|- ( ( # ` A ) + 1 ) e. _V |
30 |
|
vex |
|- f e. _V |
31 |
30
|
eliniseg |
|- ( ( ( # ` A ) + 1 ) e. _V -> ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> f < ( ( # ` A ) + 1 ) ) ) |
32 |
29 31
|
ax-mp |
|- ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> f < ( ( # ` A ) + 1 ) ) |
33 |
28 32
|
bitr4di |
|- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f <_ ( # ` A ) <-> f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) ) |
34 |
26 33
|
bitr2d |
|- ( ( ( R Or A /\ A e. Fin ) /\ f e. NN ) -> ( f e. ( `' < " { ( ( # ` A ) + 1 ) } ) <-> ( # ` A ) e. ( ZZ>= ` f ) ) ) |
35 |
34
|
pm5.32da |
|- ( ( R Or A /\ A e. Fin ) -> ( ( f e. NN /\ f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) <-> ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) ) |
36 |
2
|
elin2 |
|- ( f e. B <-> ( f e. NN /\ f e. ( `' < " { ( ( # ` A ) + 1 ) } ) ) ) |
37 |
|
elfzuzb |
|- ( f e. ( 1 ... ( # ` A ) ) <-> ( f e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
38 |
|
elnnuz |
|- ( f e. NN <-> f e. ( ZZ>= ` 1 ) ) |
39 |
38
|
anbi1i |
|- ( ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) <-> ( f e. ( ZZ>= ` 1 ) /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
40 |
37 39
|
bitr4i |
|- ( f e. ( 1 ... ( # ` A ) ) <-> ( f e. NN /\ ( # ` A ) e. ( ZZ>= ` f ) ) ) |
41 |
35 36 40
|
3bitr4g |
|- ( ( R Or A /\ A e. Fin ) -> ( f e. B <-> f e. ( 1 ... ( # ` A ) ) ) ) |
42 |
41
|
eqrdv |
|- ( ( R Or A /\ A e. Fin ) -> B = ( 1 ... ( # ` A ) ) ) |
43 |
|
isoeq4 |
|- ( B = ( 1 ... ( # ` A ) ) -> ( ( `' G |` B ) Isom < , _E ( B , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) ) |
44 |
42 43
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> ( ( `' G |` B ) Isom < , _E ( B , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) ) |
45 |
22 44
|
mpbid |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) ) |
46 |
4
|
oion |
|- ( A e. Fin -> dom O e. On ) |
47 |
46
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> dom O e. On ) |
48 |
|
simpr |
|- ( ( R Or A /\ A e. Fin ) -> A e. Fin ) |
49 |
|
wofi |
|- ( ( R Or A /\ A e. Fin ) -> R We A ) |
50 |
4
|
oien |
|- ( ( A e. Fin /\ R We A ) -> dom O ~~ A ) |
51 |
48 49 50
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> dom O ~~ A ) |
52 |
|
enfii |
|- ( ( A e. Fin /\ dom O ~~ A ) -> dom O e. Fin ) |
53 |
48 51 52
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> dom O e. Fin ) |
54 |
47 53
|
elind |
|- ( ( R Or A /\ A e. Fin ) -> dom O e. ( On i^i Fin ) ) |
55 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
56 |
54 55
|
eleqtrrdi |
|- ( ( R Or A /\ A e. Fin ) -> dom O e. _om ) |
57 |
|
eqid |
|- ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) |
58 |
|
0z |
|- 0 e. ZZ |
59 |
1 57 8 58
|
uzrdgxfr |
|- ( dom O e. _om -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + ( 1 - 0 ) ) ) |
60 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
61 |
60
|
oveq2i |
|- ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + ( 1 - 0 ) ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) |
62 |
59 61
|
eqtrdi |
|- ( dom O e. _om -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) ) |
63 |
56 62
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> ( G ` dom O ) = ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) ) |
64 |
51
|
ensymd |
|- ( ( R Or A /\ A e. Fin ) -> A ~~ dom O ) |
65 |
|
cardennn |
|- ( ( A ~~ dom O /\ dom O e. _om ) -> ( card ` A ) = dom O ) |
66 |
64 56 65
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> ( card ` A ) = dom O ) |
67 |
66
|
fveq2d |
|- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) ) |
68 |
57
|
hashgval |
|- ( A e. Fin -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
69 |
68
|
adantl |
|- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
70 |
67 69
|
eqtr3d |
|- ( ( R Or A /\ A e. Fin ) -> ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) = ( # ` A ) ) |
71 |
70
|
oveq1d |
|- ( ( R Or A /\ A e. Fin ) -> ( ( ( rec ( ( n e. _V |-> ( n + 1 ) ) , 0 ) |` _om ) ` dom O ) + 1 ) = ( ( # ` A ) + 1 ) ) |
72 |
63 71
|
eqtrd |
|- ( ( R Or A /\ A e. Fin ) -> ( G ` dom O ) = ( ( # ` A ) + 1 ) ) |
73 |
72
|
fveq2d |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( G ` dom O ) ) = ( `' G ` ( ( # ` A ) + 1 ) ) ) |
74 |
|
isof1o |
|- ( G Isom _E , < ( _om , NN ) -> G : _om -1-1-onto-> NN ) |
75 |
12 74
|
ax-mp |
|- G : _om -1-1-onto-> NN |
76 |
|
f1ocnvfv1 |
|- ( ( G : _om -1-1-onto-> NN /\ dom O e. _om ) -> ( `' G ` ( G ` dom O ) ) = dom O ) |
77 |
75 56 76
|
sylancr |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( G ` dom O ) ) = dom O ) |
78 |
73 77
|
eqtr3d |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G ` ( ( # ` A ) + 1 ) ) = dom O ) |
79 |
78
|
ineq2d |
|- ( ( R Or A /\ A e. Fin ) -> ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) = ( _om i^i dom O ) ) |
80 |
|
ordom |
|- Ord _om |
81 |
|
ordelss |
|- ( ( Ord _om /\ dom O e. _om ) -> dom O C_ _om ) |
82 |
80 56 81
|
sylancr |
|- ( ( R Or A /\ A e. Fin ) -> dom O C_ _om ) |
83 |
|
sseqin2 |
|- ( dom O C_ _om <-> ( _om i^i dom O ) = dom O ) |
84 |
82 83
|
sylib |
|- ( ( R Or A /\ A e. Fin ) -> ( _om i^i dom O ) = dom O ) |
85 |
79 84
|
eqtrd |
|- ( ( R Or A /\ A e. Fin ) -> ( _om i^i ( `' G ` ( ( # ` A ) + 1 ) ) ) = dom O ) |
86 |
3 85
|
eqtrid |
|- ( ( R Or A /\ A e. Fin ) -> C = dom O ) |
87 |
|
isoeq5 |
|- ( C = dom O -> ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) ) |
88 |
86 87
|
syl |
|- ( ( R Or A /\ A e. Fin ) -> ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , C ) <-> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) ) |
89 |
45 88
|
mpbid |
|- ( ( R Or A /\ A e. Fin ) -> ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) ) |
90 |
4
|
oiiso |
|- ( ( A e. Fin /\ R We A ) -> O Isom _E , R ( dom O , A ) ) |
91 |
48 49 90
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> O Isom _E , R ( dom O , A ) ) |
92 |
|
isotr |
|- ( ( ( `' G |` B ) Isom < , _E ( ( 1 ... ( # ` A ) ) , dom O ) /\ O Isom _E , R ( dom O , A ) ) -> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
93 |
89 91 92
|
syl2anc |
|- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
94 |
|
isof1o |
|- ( ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
95 |
|
f1of |
|- ( ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) --> A ) |
96 |
93 94 95
|
3syl |
|- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) : ( 1 ... ( # ` A ) ) --> A ) |
97 |
|
fzfid |
|- ( ( R Or A /\ A e. Fin ) -> ( 1 ... ( # ` A ) ) e. Fin ) |
98 |
96 97
|
fexd |
|- ( ( R Or A /\ A e. Fin ) -> ( O o. ( `' G |` B ) ) e. _V ) |
99 |
|
isoeq1 |
|- ( f = ( O o. ( `' G |` B ) ) -> ( f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) <-> ( O o. ( `' G |` B ) ) Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) ) |
100 |
98 93 99
|
spcedv |
|- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |