Step |
Hyp |
Ref |
Expression |
1 |
|
sbc6g |
|- ( N e. ZZ -> ( [. N / k ]. ph <-> A. k ( k = N -> ph ) ) ) |
2 |
|
df-ral |
|- ( A. k e. ( N ... N ) ph <-> A. k ( k e. ( N ... N ) -> ph ) ) |
3 |
|
elfz1eq |
|- ( k e. ( N ... N ) -> k = N ) |
4 |
|
elfz3 |
|- ( N e. ZZ -> N e. ( N ... N ) ) |
5 |
|
eleq1 |
|- ( k = N -> ( k e. ( N ... N ) <-> N e. ( N ... N ) ) ) |
6 |
4 5
|
syl5ibrcom |
|- ( N e. ZZ -> ( k = N -> k e. ( N ... N ) ) ) |
7 |
3 6
|
impbid2 |
|- ( N e. ZZ -> ( k e. ( N ... N ) <-> k = N ) ) |
8 |
7
|
imbi1d |
|- ( N e. ZZ -> ( ( k e. ( N ... N ) -> ph ) <-> ( k = N -> ph ) ) ) |
9 |
8
|
albidv |
|- ( N e. ZZ -> ( A. k ( k e. ( N ... N ) -> ph ) <-> A. k ( k = N -> ph ) ) ) |
10 |
2 9
|
bitr2id |
|- ( N e. ZZ -> ( A. k ( k = N -> ph ) <-> A. k e. ( N ... N ) ph ) ) |
11 |
1 10
|
bitr2d |
|- ( N e. ZZ -> ( A. k e. ( N ... N ) ph <-> [. N / k ]. ph ) ) |