Metamath Proof Explorer


Theorem fzct

Description: A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion fzct
|- ( N ... M ) ~<_ _om

Proof

Step Hyp Ref Expression
1 fzssz
 |-  ( N ... M ) C_ ZZ
2 zct
 |-  ZZ ~<_ _om
3 ssct
 |-  ( ( ( N ... M ) C_ ZZ /\ ZZ ~<_ _om ) -> ( N ... M ) ~<_ _om )
4 1 2 3 mp2an
 |-  ( N ... M ) ~<_ _om