| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0ge0 |  |-  ( N e. NN0 -> 0 <_ N ) | 
						
							| 2 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 3 |  | nn0addge1 |  |-  ( ( N e. RR /\ N e. NN0 ) -> N <_ ( N + N ) ) | 
						
							| 4 | 2 3 | mpancom |  |-  ( N e. NN0 -> N <_ ( N + N ) ) | 
						
							| 5 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 6 | 5 | 2timesd |  |-  ( N e. NN0 -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 7 | 4 6 | breqtrrd |  |-  ( N e. NN0 -> N <_ ( 2 x. N ) ) | 
						
							| 8 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 9 |  | 0zd |  |-  ( N e. NN0 -> 0 e. ZZ ) | 
						
							| 10 |  | 2z |  |-  2 e. ZZ | 
						
							| 11 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) | 
						
							| 12 | 10 8 11 | sylancr |  |-  ( N e. NN0 -> ( 2 x. N ) e. ZZ ) | 
						
							| 13 |  | elfz |  |-  ( ( N e. ZZ /\ 0 e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( N e. ( 0 ... ( 2 x. N ) ) <-> ( 0 <_ N /\ N <_ ( 2 x. N ) ) ) ) | 
						
							| 14 | 8 9 12 13 | syl3anc |  |-  ( N e. NN0 -> ( N e. ( 0 ... ( 2 x. N ) ) <-> ( 0 <_ N /\ N <_ ( 2 x. N ) ) ) ) | 
						
							| 15 | 1 7 14 | mpbir2and |  |-  ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |