| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzspl |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 2 | 1 | difeq1d |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) ) | 
						
							| 3 |  | difun2 |  |-  ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) | 
						
							| 4 | 2 3 | eqtrdi |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) ) | 
						
							| 5 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 6 |  | uzid |  |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) ) | 
						
							| 7 |  | uznfz |  |-  ( N e. ( ZZ>= ` N ) -> -. N e. ( M ... ( N - 1 ) ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( N e. ( ZZ>= ` M ) -> -. N e. ( M ... ( N - 1 ) ) ) | 
						
							| 9 |  | disjsn |  |-  ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( M ... ( N - 1 ) ) ) | 
						
							| 10 | 8 9 | sylibr |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) | 
						
							| 11 |  | disjdif2 |  |-  ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) | 
						
							| 13 | 4 12 | eqtrd |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( M ... ( N - 1 ) ) ) |