Step |
Hyp |
Ref |
Expression |
1 |
|
fzspl |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
2 |
1
|
difeq1d |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) ) |
3 |
|
difun2 |
|- ( ( ( M ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) |
4 |
2 3
|
eqtrdi |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( ( M ... ( N - 1 ) ) \ { N } ) ) |
5 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
6 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
7 |
|
uznfz |
|- ( N e. ( ZZ>= ` N ) -> -. N e. ( M ... ( N - 1 ) ) ) |
8 |
5 6 7
|
3syl |
|- ( N e. ( ZZ>= ` M ) -> -. N e. ( M ... ( N - 1 ) ) ) |
9 |
|
disjsn |
|- ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( M ... ( N - 1 ) ) ) |
10 |
8 9
|
sylibr |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
11 |
|
disjdif2 |
|- ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) |
12 |
10 11
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N - 1 ) ) \ { N } ) = ( M ... ( N - 1 ) ) ) |
13 |
4 12
|
eqtrd |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) \ { N } ) = ( M ... ( N - 1 ) ) ) |