| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fzsuc |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
							| 2 | 1 | difeq1d |  |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N + 1 ) ) \ { ( N + 1 ) } ) = ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) ) | 
						
							| 3 |  | uncom |  |-  ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) | 
						
							| 4 |  | ssun2 |  |-  { ( N + 1 ) } C_ ( ( M ... N ) u. { ( N + 1 ) } ) | 
						
							| 5 |  | incom |  |-  ( { ( N + 1 ) } i^i ( M ... N ) ) = ( ( M ... N ) i^i { ( N + 1 ) } ) | 
						
							| 6 |  | fzp1disj |  |-  ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) | 
						
							| 7 | 5 6 | eqtri |  |-  ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) | 
						
							| 8 | 7 | a1i |  |-  ( N e. ( ZZ>= ` M ) -> ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) ) | 
						
							| 9 |  | uneqdifeq |  |-  ( ( { ( N + 1 ) } C_ ( ( M ... N ) u. { ( N + 1 ) } ) /\ ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) ) -> ( ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) ) | 
						
							| 10 | 4 8 9 | sylancr |  |-  ( N e. ( ZZ>= ` M ) -> ( ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) ) | 
						
							| 11 | 3 10 | mpbii |  |-  ( N e. ( ZZ>= ` M ) -> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) | 
						
							| 12 | 2 11 | eqtr2d |  |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... ( N + 1 ) ) \ { ( N + 1 ) } ) ) |