Step |
Hyp |
Ref |
Expression |
1 |
|
fzsuc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
2 |
1
|
difeq1d |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... ( N + 1 ) ) \ { ( N + 1 ) } ) = ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) ) |
3 |
|
uncom |
|- ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) |
4 |
|
ssun2 |
|- { ( N + 1 ) } C_ ( ( M ... N ) u. { ( N + 1 ) } ) |
5 |
|
incom |
|- ( { ( N + 1 ) } i^i ( M ... N ) ) = ( ( M ... N ) i^i { ( N + 1 ) } ) |
6 |
|
fzp1disj |
|- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |
7 |
5 6
|
eqtri |
|- ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) |
8 |
7
|
a1i |
|- ( N e. ( ZZ>= ` M ) -> ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) ) |
9 |
|
uneqdifeq |
|- ( ( { ( N + 1 ) } C_ ( ( M ... N ) u. { ( N + 1 ) } ) /\ ( { ( N + 1 ) } i^i ( M ... N ) ) = (/) ) -> ( ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) ) |
10 |
4 8 9
|
sylancr |
|- ( N e. ( ZZ>= ` M ) -> ( ( { ( N + 1 ) } u. ( M ... N ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) ) |
11 |
3 10
|
mpbii |
|- ( N e. ( ZZ>= ` M ) -> ( ( ( M ... N ) u. { ( N + 1 ) } ) \ { ( N + 1 ) } ) = ( M ... N ) ) |
12 |
2 11
|
eqtr2d |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... ( N + 1 ) ) \ { ( N + 1 ) } ) ) |