Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|- ( x e. ( ( J ... K ) i^i ( M ... N ) ) <-> ( x e. ( J ... K ) /\ x e. ( M ... N ) ) ) |
2 |
|
elfzel1 |
|- ( x e. ( M ... N ) -> M e. ZZ ) |
3 |
2
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. ZZ ) |
4 |
3
|
zred |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M e. RR ) |
5 |
|
elfzel2 |
|- ( x e. ( J ... K ) -> K e. ZZ ) |
6 |
5
|
adantr |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. ZZ ) |
7 |
6
|
zred |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> K e. RR ) |
8 |
|
elfzelz |
|- ( x e. ( M ... N ) -> x e. ZZ ) |
9 |
8
|
zred |
|- ( x e. ( M ... N ) -> x e. RR ) |
10 |
9
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x e. RR ) |
11 |
|
elfzle1 |
|- ( x e. ( M ... N ) -> M <_ x ) |
12 |
11
|
adantl |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ x ) |
13 |
|
elfzle2 |
|- ( x e. ( J ... K ) -> x <_ K ) |
14 |
13
|
adantr |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> x <_ K ) |
15 |
4 10 7 12 14
|
letrd |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> M <_ K ) |
16 |
4 7 15
|
lensymd |
|- ( ( x e. ( J ... K ) /\ x e. ( M ... N ) ) -> -. K < M ) |
17 |
1 16
|
sylbi |
|- ( x e. ( ( J ... K ) i^i ( M ... N ) ) -> -. K < M ) |
18 |
17
|
con2i |
|- ( K < M -> -. x e. ( ( J ... K ) i^i ( M ... N ) ) ) |
19 |
18
|
eq0rdv |
|- ( K < M -> ( ( J ... K ) i^i ( M ... N ) ) = (/) ) |