| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzennn.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| 2 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 3 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 4 |
|
1z |
|- 1 e. ZZ |
| 5 |
|
zsubcl |
|- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( 1 - M ) e. ZZ ) |
| 6 |
4 2 5
|
sylancr |
|- ( N e. ( ZZ>= ` M ) -> ( 1 - M ) e. ZZ ) |
| 7 |
|
fzen |
|- ( ( M e. ZZ /\ N e. ZZ /\ ( 1 - M ) e. ZZ ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) ) |
| 8 |
2 3 6 7
|
syl3anc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) ) |
| 9 |
2
|
zcnd |
|- ( N e. ( ZZ>= ` M ) -> M e. CC ) |
| 10 |
|
ax-1cn |
|- 1 e. CC |
| 11 |
|
pncan3 |
|- ( ( M e. CC /\ 1 e. CC ) -> ( M + ( 1 - M ) ) = 1 ) |
| 12 |
9 10 11
|
sylancl |
|- ( N e. ( ZZ>= ` M ) -> ( M + ( 1 - M ) ) = 1 ) |
| 13 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 14 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 15 |
|
addsubass |
|- ( ( N e. CC /\ 1 e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 16 |
10 15
|
mp3an2 |
|- ( ( N e. CC /\ M e. CC ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 17 |
13 14 16
|
syl2an |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 18 |
3 2 17
|
syl2anc |
|- ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) = ( N + ( 1 - M ) ) ) |
| 19 |
18
|
eqcomd |
|- ( N e. ( ZZ>= ` M ) -> ( N + ( 1 - M ) ) = ( ( N + 1 ) - M ) ) |
| 20 |
12 19
|
oveq12d |
|- ( N e. ( ZZ>= ` M ) -> ( ( M + ( 1 - M ) ) ... ( N + ( 1 - M ) ) ) = ( 1 ... ( ( N + 1 ) - M ) ) ) |
| 21 |
8 20
|
breqtrd |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) ) |
| 22 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 23 |
|
uznn0sub |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
| 24 |
1
|
fzennn |
|- ( ( ( N + 1 ) - M ) e. NN0 -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| 25 |
22 23 24
|
3syl |
|- ( N e. ( ZZ>= ` M ) -> ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| 26 |
|
entr |
|- ( ( ( M ... N ) ~~ ( 1 ... ( ( N + 1 ) - M ) ) /\ ( 1 ... ( ( N + 1 ) - M ) ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |
| 27 |
21 25 26
|
syl2anc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' G ` ( ( N + 1 ) - M ) ) ) |