| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzennn.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| 2 |
|
oveq2 |
|- ( n = 0 -> ( 1 ... n ) = ( 1 ... 0 ) ) |
| 3 |
|
fveq2 |
|- ( n = 0 -> ( `' G ` n ) = ( `' G ` 0 ) ) |
| 4 |
2 3
|
breq12d |
|- ( n = 0 -> ( ( 1 ... n ) ~~ ( `' G ` n ) <-> ( 1 ... 0 ) ~~ ( `' G ` 0 ) ) ) |
| 5 |
|
oveq2 |
|- ( n = m -> ( 1 ... n ) = ( 1 ... m ) ) |
| 6 |
|
fveq2 |
|- ( n = m -> ( `' G ` n ) = ( `' G ` m ) ) |
| 7 |
5 6
|
breq12d |
|- ( n = m -> ( ( 1 ... n ) ~~ ( `' G ` n ) <-> ( 1 ... m ) ~~ ( `' G ` m ) ) ) |
| 8 |
|
oveq2 |
|- ( n = ( m + 1 ) -> ( 1 ... n ) = ( 1 ... ( m + 1 ) ) ) |
| 9 |
|
fveq2 |
|- ( n = ( m + 1 ) -> ( `' G ` n ) = ( `' G ` ( m + 1 ) ) ) |
| 10 |
8 9
|
breq12d |
|- ( n = ( m + 1 ) -> ( ( 1 ... n ) ~~ ( `' G ` n ) <-> ( 1 ... ( m + 1 ) ) ~~ ( `' G ` ( m + 1 ) ) ) ) |
| 11 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
| 12 |
|
fveq2 |
|- ( n = N -> ( `' G ` n ) = ( `' G ` N ) ) |
| 13 |
11 12
|
breq12d |
|- ( n = N -> ( ( 1 ... n ) ~~ ( `' G ` n ) <-> ( 1 ... N ) ~~ ( `' G ` N ) ) ) |
| 14 |
|
0ex |
|- (/) e. _V |
| 15 |
14
|
enref |
|- (/) ~~ (/) |
| 16 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 17 |
|
0z |
|- 0 e. ZZ |
| 18 |
17 1
|
om2uzf1oi |
|- G : _om -1-1-onto-> ( ZZ>= ` 0 ) |
| 19 |
|
peano1 |
|- (/) e. _om |
| 20 |
18 19
|
pm3.2i |
|- ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ (/) e. _om ) |
| 21 |
17 1
|
om2uz0i |
|- ( G ` (/) ) = 0 |
| 22 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ (/) e. _om ) -> ( ( G ` (/) ) = 0 -> ( `' G ` 0 ) = (/) ) ) |
| 23 |
20 21 22
|
mp2 |
|- ( `' G ` 0 ) = (/) |
| 24 |
15 16 23
|
3brtr4i |
|- ( 1 ... 0 ) ~~ ( `' G ` 0 ) |
| 25 |
|
simpr |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( 1 ... m ) ~~ ( `' G ` m ) ) |
| 26 |
|
ovex |
|- ( m + 1 ) e. _V |
| 27 |
|
fvex |
|- ( `' G ` m ) e. _V |
| 28 |
|
en2sn |
|- ( ( ( m + 1 ) e. _V /\ ( `' G ` m ) e. _V ) -> { ( m + 1 ) } ~~ { ( `' G ` m ) } ) |
| 29 |
26 27 28
|
mp2an |
|- { ( m + 1 ) } ~~ { ( `' G ` m ) } |
| 30 |
29
|
a1i |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> { ( m + 1 ) } ~~ { ( `' G ` m ) } ) |
| 31 |
|
fzp1disj |
|- ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) |
| 32 |
31
|
a1i |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) ) |
| 33 |
|
f1ocnvdm |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` 0 ) ) -> ( `' G ` m ) e. _om ) |
| 34 |
18 33
|
mpan |
|- ( m e. ( ZZ>= ` 0 ) -> ( `' G ` m ) e. _om ) |
| 35 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 36 |
34 35
|
eleq2s |
|- ( m e. NN0 -> ( `' G ` m ) e. _om ) |
| 37 |
|
nnord |
|- ( ( `' G ` m ) e. _om -> Ord ( `' G ` m ) ) |
| 38 |
|
ordirr |
|- ( Ord ( `' G ` m ) -> -. ( `' G ` m ) e. ( `' G ` m ) ) |
| 39 |
36 37 38
|
3syl |
|- ( m e. NN0 -> -. ( `' G ` m ) e. ( `' G ` m ) ) |
| 40 |
39
|
adantr |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> -. ( `' G ` m ) e. ( `' G ` m ) ) |
| 41 |
|
disjsn |
|- ( ( ( `' G ` m ) i^i { ( `' G ` m ) } ) = (/) <-> -. ( `' G ` m ) e. ( `' G ` m ) ) |
| 42 |
40 41
|
sylibr |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( ( `' G ` m ) i^i { ( `' G ` m ) } ) = (/) ) |
| 43 |
|
unen |
|- ( ( ( ( 1 ... m ) ~~ ( `' G ` m ) /\ { ( m + 1 ) } ~~ { ( `' G ` m ) } ) /\ ( ( ( 1 ... m ) i^i { ( m + 1 ) } ) = (/) /\ ( ( `' G ` m ) i^i { ( `' G ` m ) } ) = (/) ) ) -> ( ( 1 ... m ) u. { ( m + 1 ) } ) ~~ ( ( `' G ` m ) u. { ( `' G ` m ) } ) ) |
| 44 |
25 30 32 42 43
|
syl22anc |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( ( 1 ... m ) u. { ( m + 1 ) } ) ~~ ( ( `' G ` m ) u. { ( `' G ` m ) } ) ) |
| 45 |
|
1z |
|- 1 e. ZZ |
| 46 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 47 |
46
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 48 |
35 47
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 49 |
48
|
eleq2i |
|- ( m e. NN0 <-> m e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 50 |
49
|
biimpi |
|- ( m e. NN0 -> m e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 51 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ m e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( m + 1 ) ) = ( ( 1 ... m ) u. { ( m + 1 ) } ) ) |
| 52 |
45 50 51
|
sylancr |
|- ( m e. NN0 -> ( 1 ... ( m + 1 ) ) = ( ( 1 ... m ) u. { ( m + 1 ) } ) ) |
| 53 |
52
|
adantr |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( 1 ... ( m + 1 ) ) = ( ( 1 ... m ) u. { ( m + 1 ) } ) ) |
| 54 |
|
peano2 |
|- ( ( `' G ` m ) e. _om -> suc ( `' G ` m ) e. _om ) |
| 55 |
36 54
|
syl |
|- ( m e. NN0 -> suc ( `' G ` m ) e. _om ) |
| 56 |
55 18
|
jctil |
|- ( m e. NN0 -> ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ suc ( `' G ` m ) e. _om ) ) |
| 57 |
17 1
|
om2uzsuci |
|- ( ( `' G ` m ) e. _om -> ( G ` suc ( `' G ` m ) ) = ( ( G ` ( `' G ` m ) ) + 1 ) ) |
| 58 |
36 57
|
syl |
|- ( m e. NN0 -> ( G ` suc ( `' G ` m ) ) = ( ( G ` ( `' G ` m ) ) + 1 ) ) |
| 59 |
35
|
eleq2i |
|- ( m e. NN0 <-> m e. ( ZZ>= ` 0 ) ) |
| 60 |
59
|
biimpi |
|- ( m e. NN0 -> m e. ( ZZ>= ` 0 ) ) |
| 61 |
|
f1ocnvfv2 |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` 0 ) ) -> ( G ` ( `' G ` m ) ) = m ) |
| 62 |
18 60 61
|
sylancr |
|- ( m e. NN0 -> ( G ` ( `' G ` m ) ) = m ) |
| 63 |
62
|
oveq1d |
|- ( m e. NN0 -> ( ( G ` ( `' G ` m ) ) + 1 ) = ( m + 1 ) ) |
| 64 |
58 63
|
eqtrd |
|- ( m e. NN0 -> ( G ` suc ( `' G ` m ) ) = ( m + 1 ) ) |
| 65 |
|
f1ocnvfv |
|- ( ( G : _om -1-1-onto-> ( ZZ>= ` 0 ) /\ suc ( `' G ` m ) e. _om ) -> ( ( G ` suc ( `' G ` m ) ) = ( m + 1 ) -> ( `' G ` ( m + 1 ) ) = suc ( `' G ` m ) ) ) |
| 66 |
56 64 65
|
sylc |
|- ( m e. NN0 -> ( `' G ` ( m + 1 ) ) = suc ( `' G ` m ) ) |
| 67 |
66
|
adantr |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( `' G ` ( m + 1 ) ) = suc ( `' G ` m ) ) |
| 68 |
|
df-suc |
|- suc ( `' G ` m ) = ( ( `' G ` m ) u. { ( `' G ` m ) } ) |
| 69 |
67 68
|
eqtrdi |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( `' G ` ( m + 1 ) ) = ( ( `' G ` m ) u. { ( `' G ` m ) } ) ) |
| 70 |
44 53 69
|
3brtr4d |
|- ( ( m e. NN0 /\ ( 1 ... m ) ~~ ( `' G ` m ) ) -> ( 1 ... ( m + 1 ) ) ~~ ( `' G ` ( m + 1 ) ) ) |
| 71 |
70
|
ex |
|- ( m e. NN0 -> ( ( 1 ... m ) ~~ ( `' G ` m ) -> ( 1 ... ( m + 1 ) ) ~~ ( `' G ` ( m + 1 ) ) ) ) |
| 72 |
4 7 10 13 24 71
|
nn0ind |
|- ( N e. NN0 -> ( 1 ... N ) ~~ ( `' G ` N ) ) |