Step |
Hyp |
Ref |
Expression |
1 |
|
0fin |
|- (/) e. Fin |
2 |
|
eleq1 |
|- ( ( M ... N ) = (/) -> ( ( M ... N ) e. Fin <-> (/) e. Fin ) ) |
3 |
1 2
|
mpbiri |
|- ( ( M ... N ) = (/) -> ( M ... N ) e. Fin ) |
4 |
|
fzn0 |
|- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
5 |
|
onfin2 |
|- _om = ( On i^i Fin ) |
6 |
|
inss2 |
|- ( On i^i Fin ) C_ Fin |
7 |
5 6
|
eqsstri |
|- _om C_ Fin |
8 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
9 |
8
|
hashgf1o |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
10 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
11 |
|
uznn0sub |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
12 |
10 11
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) - M ) e. NN0 ) |
13 |
|
f1ocnvdm |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ ( ( N + 1 ) - M ) e. NN0 ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. _om ) |
14 |
9 12 13
|
sylancr |
|- ( N e. ( ZZ>= ` M ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. _om ) |
15 |
7 14
|
sselid |
|- ( N e. ( ZZ>= ` M ) -> ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. Fin ) |
16 |
8
|
fzen2 |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) ~~ ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) ) |
17 |
|
enfii |
|- ( ( ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) e. Fin /\ ( M ... N ) ~~ ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( N + 1 ) - M ) ) ) -> ( M ... N ) e. Fin ) |
18 |
15 16 17
|
syl2anc |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) e. Fin ) |
19 |
4 18
|
sylbi |
|- ( ( M ... N ) =/= (/) -> ( M ... N ) e. Fin ) |
20 |
3 19
|
pm2.61ine |
|- ( M ... N ) e. Fin |