Metamath Proof Explorer


Theorem fzisfzounsn

Description: A finite interval of integers as union of a half-open integer range and a singleton. (Contributed by Alexander van der Vekens, 15-Jun-2018)

Ref Expression
Assertion fzisfzounsn
|- ( B e. ( ZZ>= ` A ) -> ( A ... B ) = ( ( A ..^ B ) u. { B } ) )

Proof

Step Hyp Ref Expression
1 eluzelz
 |-  ( B e. ( ZZ>= ` A ) -> B e. ZZ )
2 fzval3
 |-  ( B e. ZZ -> ( A ... B ) = ( A ..^ ( B + 1 ) ) )
3 1 2 syl
 |-  ( B e. ( ZZ>= ` A ) -> ( A ... B ) = ( A ..^ ( B + 1 ) ) )
4 fzosplitsn
 |-  ( B e. ( ZZ>= ` A ) -> ( A ..^ ( B + 1 ) ) = ( ( A ..^ B ) u. { B } ) )
5 3 4 eqtrd
 |-  ( B e. ( ZZ>= ` A ) -> ( A ... B ) = ( ( A ..^ B ) u. { B } ) )