Step |
Hyp |
Ref |
Expression |
1 |
|
fzisoeu.h |
|- ( ph -> H e. Fin ) |
2 |
|
fzisoeu.or |
|- ( ph -> < Or H ) |
3 |
|
fzisoeu.m |
|- ( ph -> M e. ZZ ) |
4 |
|
fzisoeu.4 |
|- N = ( ( # ` H ) + ( M - 1 ) ) |
5 |
|
fzssz |
|- ( M ... N ) C_ ZZ |
6 |
|
zssre |
|- ZZ C_ RR |
7 |
5 6
|
sstri |
|- ( M ... N ) C_ RR |
8 |
|
ltso |
|- < Or RR |
9 |
|
soss |
|- ( ( M ... N ) C_ RR -> ( < Or RR -> < Or ( M ... N ) ) ) |
10 |
7 8 9
|
mp2 |
|- < Or ( M ... N ) |
11 |
|
fzfi |
|- ( M ... N ) e. Fin |
12 |
|
fz1iso |
|- ( ( < Or ( M ... N ) /\ ( M ... N ) e. Fin ) -> E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) ) |
13 |
10 11 12
|
mp2an |
|- E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) |
14 |
|
fveq2 |
|- ( H = (/) -> ( # ` H ) = ( # ` (/) ) ) |
15 |
|
hash0 |
|- ( # ` (/) ) = 0 |
16 |
14 15
|
eqtrdi |
|- ( H = (/) -> ( # ` H ) = 0 ) |
17 |
16
|
oveq1d |
|- ( H = (/) -> ( ( # ` H ) + ( M - 1 ) ) = ( 0 + ( M - 1 ) ) ) |
18 |
4 17
|
eqtrid |
|- ( H = (/) -> N = ( 0 + ( M - 1 ) ) ) |
19 |
18
|
oveq2d |
|- ( H = (/) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ H = (/) ) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
21 |
3
|
zcnd |
|- ( ph -> M e. CC ) |
22 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
23 |
21 22
|
subcld |
|- ( ph -> ( M - 1 ) e. CC ) |
24 |
23
|
addid2d |
|- ( ph -> ( 0 + ( M - 1 ) ) = ( M - 1 ) ) |
25 |
24
|
oveq2d |
|- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = ( M ... ( M - 1 ) ) ) |
26 |
3
|
zred |
|- ( ph -> M e. RR ) |
27 |
26
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
28 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
29 |
3 28
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
30 |
|
fzn |
|- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
31 |
3 29 30
|
syl2anc |
|- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
32 |
27 31
|
mpbid |
|- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
33 |
25 32
|
eqtrd |
|- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
34 |
33
|
adantr |
|- ( ( ph /\ H = (/) ) -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
35 |
|
eqcom |
|- ( H = (/) <-> (/) = H ) |
36 |
35
|
biimpi |
|- ( H = (/) -> (/) = H ) |
37 |
36
|
adantl |
|- ( ( ph /\ H = (/) ) -> (/) = H ) |
38 |
20 34 37
|
3eqtrd |
|- ( ( ph /\ H = (/) ) -> ( M ... N ) = H ) |
39 |
38
|
fveq2d |
|- ( ( ph /\ H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
40 |
22 21
|
pncan3d |
|- ( ph -> ( 1 + ( M - 1 ) ) = M ) |
41 |
40
|
eqcomd |
|- ( ph -> M = ( 1 + ( M - 1 ) ) ) |
42 |
41
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> M = ( 1 + ( M - 1 ) ) ) |
43 |
|
1red |
|- ( ( ph /\ -. H = (/) ) -> 1 e. RR ) |
44 |
|
neqne |
|- ( -. H = (/) -> H =/= (/) ) |
45 |
44
|
adantl |
|- ( ( ph /\ -. H = (/) ) -> H =/= (/) ) |
46 |
1
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> H e. Fin ) |
47 |
|
hashnncl |
|- ( H e. Fin -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
48 |
46 47
|
syl |
|- ( ( ph /\ -. H = (/) ) -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
49 |
45 48
|
mpbird |
|- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. NN ) |
50 |
49
|
nnred |
|- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. RR ) |
51 |
29
|
zred |
|- ( ph -> ( M - 1 ) e. RR ) |
52 |
51
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( M - 1 ) e. RR ) |
53 |
49
|
nnge1d |
|- ( ( ph /\ -. H = (/) ) -> 1 <_ ( # ` H ) ) |
54 |
43 50 52 53
|
leadd1dd |
|- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ ( ( # ` H ) + ( M - 1 ) ) ) |
55 |
54 4
|
breqtrrdi |
|- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ N ) |
56 |
42 55
|
eqbrtrd |
|- ( ( ph /\ -. H = (/) ) -> M <_ N ) |
57 |
3
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> M e. ZZ ) |
58 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
59 |
|
nn0z |
|- ( ( # ` H ) e. NN0 -> ( # ` H ) e. ZZ ) |
60 |
1 58 59
|
3syl |
|- ( ph -> ( # ` H ) e. ZZ ) |
61 |
60 29
|
zaddcld |
|- ( ph -> ( ( # ` H ) + ( M - 1 ) ) e. ZZ ) |
62 |
4 61
|
eqeltrid |
|- ( ph -> N e. ZZ ) |
63 |
62
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> N e. ZZ ) |
64 |
|
eluz |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
65 |
57 63 64
|
syl2anc |
|- ( ( ph /\ -. H = (/) ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
66 |
56 65
|
mpbird |
|- ( ( ph /\ -. H = (/) ) -> N e. ( ZZ>= ` M ) ) |
67 |
|
hashfz |
|- ( N e. ( ZZ>= ` M ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
68 |
66 67
|
syl |
|- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
69 |
4
|
oveq1i |
|- ( N - M ) = ( ( ( # ` H ) + ( M - 1 ) ) - M ) |
70 |
1 58
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
71 |
70
|
nn0cnd |
|- ( ph -> ( # ` H ) e. CC ) |
72 |
71 23 21
|
addsubassd |
|- ( ph -> ( ( ( # ` H ) + ( M - 1 ) ) - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
73 |
69 72
|
eqtrid |
|- ( ph -> ( N - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
74 |
22
|
negcld |
|- ( ph -> -u 1 e. CC ) |
75 |
21 22
|
negsubd |
|- ( ph -> ( M + -u 1 ) = ( M - 1 ) ) |
76 |
75
|
eqcomd |
|- ( ph -> ( M - 1 ) = ( M + -u 1 ) ) |
77 |
21 74 76
|
mvrladdd |
|- ( ph -> ( ( M - 1 ) - M ) = -u 1 ) |
78 |
77
|
oveq2d |
|- ( ph -> ( ( # ` H ) + ( ( M - 1 ) - M ) ) = ( ( # ` H ) + -u 1 ) ) |
79 |
73 78
|
eqtrd |
|- ( ph -> ( N - M ) = ( ( # ` H ) + -u 1 ) ) |
80 |
79
|
oveq1d |
|- ( ph -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
82 |
71 22
|
negsubd |
|- ( ph -> ( ( # ` H ) + -u 1 ) = ( ( # ` H ) - 1 ) ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( ( ( # ` H ) - 1 ) + 1 ) ) |
84 |
71 22
|
npcand |
|- ( ph -> ( ( ( # ` H ) - 1 ) + 1 ) = ( # ` H ) ) |
85 |
83 84
|
eqtrd |
|- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
86 |
85
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
87 |
68 81 86
|
3eqtrd |
|- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
88 |
39 87
|
pm2.61dan |
|- ( ph -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
89 |
88
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) ) |
90 |
|
isoeq4 |
|- ( ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
91 |
89 90
|
syl |
|- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
92 |
91
|
biimpd |
|- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
93 |
92
|
eximdv |
|- ( ph -> ( E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
94 |
13 93
|
mpi |
|- ( ph -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) |
95 |
|
fz1iso |
|- ( ( < Or H /\ H e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
96 |
2 1 95
|
syl2anc |
|- ( ph -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
97 |
|
exdistrv |
|- ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) <-> ( E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
98 |
94 96 97
|
sylanbrc |
|- ( ph -> E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
99 |
|
isocnv |
|- ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
100 |
99
|
ad2antrl |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
101 |
|
simprr |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
102 |
|
isotr |
|- ( ( `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
103 |
100 101 102
|
syl2anc |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
104 |
103
|
ex |
|- ( ph -> ( ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
105 |
104
|
2eximdv |
|- ( ph -> ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
106 |
98 105
|
mpd |
|- ( ph -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
107 |
|
vex |
|- g e. _V |
108 |
|
vex |
|- h e. _V |
109 |
108
|
cnvex |
|- `' h e. _V |
110 |
107 109
|
coex |
|- ( g o. `' h ) e. _V |
111 |
|
isoeq1 |
|- ( f = ( g o. `' h ) -> ( f Isom < , < ( ( M ... N ) , H ) <-> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
112 |
110 111
|
spcev |
|- ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
113 |
112
|
a1i |
|- ( ph -> ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
114 |
113
|
exlimdvv |
|- ( ph -> ( E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
115 |
106 114
|
mpd |
|- ( ph -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
116 |
|
ltwefz |
|- < We ( M ... N ) |
117 |
|
wemoiso |
|- ( < We ( M ... N ) -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
118 |
116 117
|
mp1i |
|- ( ph -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
119 |
|
df-eu |
|- ( E! f f Isom < , < ( ( M ... N ) , H ) <-> ( E. f f Isom < , < ( ( M ... N ) , H ) /\ E* f f Isom < , < ( ( M ... N ) , H ) ) ) |
120 |
115 118 119
|
sylanbrc |
|- ( ph -> E! f f Isom < , < ( ( M ... N ) , H ) ) |