| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzisoeu.h |
|- ( ph -> H e. Fin ) |
| 2 |
|
fzisoeu.or |
|- ( ph -> < Or H ) |
| 3 |
|
fzisoeu.m |
|- ( ph -> M e. ZZ ) |
| 4 |
|
fzisoeu.4 |
|- N = ( ( # ` H ) + ( M - 1 ) ) |
| 5 |
|
fzssz |
|- ( M ... N ) C_ ZZ |
| 6 |
|
zssre |
|- ZZ C_ RR |
| 7 |
5 6
|
sstri |
|- ( M ... N ) C_ RR |
| 8 |
|
ltso |
|- < Or RR |
| 9 |
|
soss |
|- ( ( M ... N ) C_ RR -> ( < Or RR -> < Or ( M ... N ) ) ) |
| 10 |
7 8 9
|
mp2 |
|- < Or ( M ... N ) |
| 11 |
|
fzfi |
|- ( M ... N ) e. Fin |
| 12 |
|
fz1iso |
|- ( ( < Or ( M ... N ) /\ ( M ... N ) e. Fin ) -> E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) ) |
| 13 |
10 11 12
|
mp2an |
|- E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) |
| 14 |
|
fveq2 |
|- ( H = (/) -> ( # ` H ) = ( # ` (/) ) ) |
| 15 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 16 |
14 15
|
eqtrdi |
|- ( H = (/) -> ( # ` H ) = 0 ) |
| 17 |
16
|
oveq1d |
|- ( H = (/) -> ( ( # ` H ) + ( M - 1 ) ) = ( 0 + ( M - 1 ) ) ) |
| 18 |
4 17
|
eqtrid |
|- ( H = (/) -> N = ( 0 + ( M - 1 ) ) ) |
| 19 |
18
|
oveq2d |
|- ( H = (/) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
| 20 |
19
|
adantl |
|- ( ( ph /\ H = (/) ) -> ( M ... N ) = ( M ... ( 0 + ( M - 1 ) ) ) ) |
| 21 |
3
|
zcnd |
|- ( ph -> M e. CC ) |
| 22 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 23 |
21 22
|
subcld |
|- ( ph -> ( M - 1 ) e. CC ) |
| 24 |
23
|
addlidd |
|- ( ph -> ( 0 + ( M - 1 ) ) = ( M - 1 ) ) |
| 25 |
24
|
oveq2d |
|- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = ( M ... ( M - 1 ) ) ) |
| 26 |
3
|
zred |
|- ( ph -> M e. RR ) |
| 27 |
26
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
| 28 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 29 |
3 28
|
syl |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 30 |
|
fzn |
|- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 31 |
3 29 30
|
syl2anc |
|- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 32 |
27 31
|
mpbid |
|- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
| 33 |
25 32
|
eqtrd |
|- ( ph -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ H = (/) ) -> ( M ... ( 0 + ( M - 1 ) ) ) = (/) ) |
| 35 |
|
eqcom |
|- ( H = (/) <-> (/) = H ) |
| 36 |
35
|
biimpi |
|- ( H = (/) -> (/) = H ) |
| 37 |
36
|
adantl |
|- ( ( ph /\ H = (/) ) -> (/) = H ) |
| 38 |
20 34 37
|
3eqtrd |
|- ( ( ph /\ H = (/) ) -> ( M ... N ) = H ) |
| 39 |
38
|
fveq2d |
|- ( ( ph /\ H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 40 |
22 21
|
pncan3d |
|- ( ph -> ( 1 + ( M - 1 ) ) = M ) |
| 41 |
40
|
eqcomd |
|- ( ph -> M = ( 1 + ( M - 1 ) ) ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> M = ( 1 + ( M - 1 ) ) ) |
| 43 |
|
1red |
|- ( ( ph /\ -. H = (/) ) -> 1 e. RR ) |
| 44 |
|
neqne |
|- ( -. H = (/) -> H =/= (/) ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ -. H = (/) ) -> H =/= (/) ) |
| 46 |
1
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> H e. Fin ) |
| 47 |
|
hashnncl |
|- ( H e. Fin -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
| 48 |
46 47
|
syl |
|- ( ( ph /\ -. H = (/) ) -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
| 49 |
45 48
|
mpbird |
|- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. NN ) |
| 50 |
49
|
nnred |
|- ( ( ph /\ -. H = (/) ) -> ( # ` H ) e. RR ) |
| 51 |
29
|
zred |
|- ( ph -> ( M - 1 ) e. RR ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( M - 1 ) e. RR ) |
| 53 |
49
|
nnge1d |
|- ( ( ph /\ -. H = (/) ) -> 1 <_ ( # ` H ) ) |
| 54 |
43 50 52 53
|
leadd1dd |
|- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ ( ( # ` H ) + ( M - 1 ) ) ) |
| 55 |
54 4
|
breqtrrdi |
|- ( ( ph /\ -. H = (/) ) -> ( 1 + ( M - 1 ) ) <_ N ) |
| 56 |
42 55
|
eqbrtrd |
|- ( ( ph /\ -. H = (/) ) -> M <_ N ) |
| 57 |
3
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> M e. ZZ ) |
| 58 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
| 59 |
|
nn0z |
|- ( ( # ` H ) e. NN0 -> ( # ` H ) e. ZZ ) |
| 60 |
1 58 59
|
3syl |
|- ( ph -> ( # ` H ) e. ZZ ) |
| 61 |
60 29
|
zaddcld |
|- ( ph -> ( ( # ` H ) + ( M - 1 ) ) e. ZZ ) |
| 62 |
4 61
|
eqeltrid |
|- ( ph -> N e. ZZ ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> N e. ZZ ) |
| 64 |
|
eluz |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
| 65 |
57 63 64
|
syl2anc |
|- ( ( ph /\ -. H = (/) ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
| 66 |
56 65
|
mpbird |
|- ( ( ph /\ -. H = (/) ) -> N e. ( ZZ>= ` M ) ) |
| 67 |
|
hashfz |
|- ( N e. ( ZZ>= ` M ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
| 68 |
66 67
|
syl |
|- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( ( N - M ) + 1 ) ) |
| 69 |
4
|
oveq1i |
|- ( N - M ) = ( ( ( # ` H ) + ( M - 1 ) ) - M ) |
| 70 |
1 58
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
| 71 |
70
|
nn0cnd |
|- ( ph -> ( # ` H ) e. CC ) |
| 72 |
71 23 21
|
addsubassd |
|- ( ph -> ( ( ( # ` H ) + ( M - 1 ) ) - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
| 73 |
69 72
|
eqtrid |
|- ( ph -> ( N - M ) = ( ( # ` H ) + ( ( M - 1 ) - M ) ) ) |
| 74 |
22
|
negcld |
|- ( ph -> -u 1 e. CC ) |
| 75 |
21 22
|
negsubd |
|- ( ph -> ( M + -u 1 ) = ( M - 1 ) ) |
| 76 |
75
|
eqcomd |
|- ( ph -> ( M - 1 ) = ( M + -u 1 ) ) |
| 77 |
21 74 76
|
mvrladdd |
|- ( ph -> ( ( M - 1 ) - M ) = -u 1 ) |
| 78 |
77
|
oveq2d |
|- ( ph -> ( ( # ` H ) + ( ( M - 1 ) - M ) ) = ( ( # ` H ) + -u 1 ) ) |
| 79 |
73 78
|
eqtrd |
|- ( ph -> ( N - M ) = ( ( # ` H ) + -u 1 ) ) |
| 80 |
79
|
oveq1d |
|- ( ph -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( ( N - M ) + 1 ) = ( ( ( # ` H ) + -u 1 ) + 1 ) ) |
| 82 |
71 22
|
negsubd |
|- ( ph -> ( ( # ` H ) + -u 1 ) = ( ( # ` H ) - 1 ) ) |
| 83 |
82
|
oveq1d |
|- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( ( ( # ` H ) - 1 ) + 1 ) ) |
| 84 |
71 22
|
npcand |
|- ( ph -> ( ( ( # ` H ) - 1 ) + 1 ) = ( # ` H ) ) |
| 85 |
83 84
|
eqtrd |
|- ( ph -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
| 86 |
85
|
adantr |
|- ( ( ph /\ -. H = (/) ) -> ( ( ( # ` H ) + -u 1 ) + 1 ) = ( # ` H ) ) |
| 87 |
68 81 86
|
3eqtrd |
|- ( ( ph /\ -. H = (/) ) -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 88 |
39 87
|
pm2.61dan |
|- ( ph -> ( # ` ( M ... N ) ) = ( # ` H ) ) |
| 89 |
88
|
oveq2d |
|- ( ph -> ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) ) |
| 90 |
|
isoeq4 |
|- ( ( 1 ... ( # ` ( M ... N ) ) ) = ( 1 ... ( # ` H ) ) -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 91 |
89 90
|
syl |
|- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) <-> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 92 |
91
|
biimpd |
|- ( ph -> ( h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 93 |
92
|
eximdv |
|- ( ph -> ( E. h h Isom < , < ( ( 1 ... ( # ` ( M ... N ) ) ) , ( M ... N ) ) -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) ) |
| 94 |
13 93
|
mpi |
|- ( ph -> E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) ) |
| 95 |
|
fz1iso |
|- ( ( < Or H /\ H e. Fin ) -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
| 96 |
2 1 95
|
syl2anc |
|- ( ph -> E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
| 97 |
|
exdistrv |
|- ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) <-> ( E. h h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ E. g g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
| 98 |
94 96 97
|
sylanbrc |
|- ( ph -> E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) |
| 99 |
|
isocnv |
|- ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
| 100 |
99
|
ad2antrl |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) ) |
| 101 |
|
simprr |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) |
| 102 |
|
isotr |
|- ( ( `' h Isom < , < ( ( M ... N ) , ( 1 ... ( # ` H ) ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
| 103 |
100 101 102
|
syl2anc |
|- ( ( ph /\ ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
| 104 |
103
|
ex |
|- ( ph -> ( ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
| 105 |
104
|
2eximdv |
|- ( ph -> ( E. h E. g ( h Isom < , < ( ( 1 ... ( # ` H ) ) , ( M ... N ) ) /\ g Isom < , < ( ( 1 ... ( # ` H ) ) , H ) ) -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
| 106 |
98 105
|
mpd |
|- ( ph -> E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) |
| 107 |
|
vex |
|- g e. _V |
| 108 |
|
vex |
|- h e. _V |
| 109 |
108
|
cnvex |
|- `' h e. _V |
| 110 |
107 109
|
coex |
|- ( g o. `' h ) e. _V |
| 111 |
|
isoeq1 |
|- ( f = ( g o. `' h ) -> ( f Isom < , < ( ( M ... N ) , H ) <-> ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) ) ) |
| 112 |
110 111
|
spcev |
|- ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
| 113 |
112
|
a1i |
|- ( ph -> ( ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
| 114 |
113
|
exlimdvv |
|- ( ph -> ( E. h E. g ( g o. `' h ) Isom < , < ( ( M ... N ) , H ) -> E. f f Isom < , < ( ( M ... N ) , H ) ) ) |
| 115 |
106 114
|
mpd |
|- ( ph -> E. f f Isom < , < ( ( M ... N ) , H ) ) |
| 116 |
|
ltwefz |
|- < We ( M ... N ) |
| 117 |
|
wemoiso |
|- ( < We ( M ... N ) -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
| 118 |
116 117
|
mp1i |
|- ( ph -> E* f f Isom < , < ( ( M ... N ) , H ) ) |
| 119 |
|
df-eu |
|- ( E! f f Isom < , < ( ( M ... N ) , H ) <-> ( E. f f Isom < , < ( ( M ... N ) , H ) /\ E* f f Isom < , < ( ( M ... N ) , H ) ) ) |
| 120 |
115 118 119
|
sylanbrc |
|- ( ph -> E! f f Isom < , < ( ( M ... N ) , H ) ) |