Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( N = M -> ( N ... N ) = ( M ... N ) ) |
2 |
1
|
eleq2d |
|- ( N = M -> ( K e. ( N ... N ) <-> K e. ( M ... N ) ) ) |
3 |
|
elfz1eq |
|- ( K e. ( N ... N ) -> K = N ) |
4 |
2 3
|
syl6bir |
|- ( N = M -> ( K e. ( M ... N ) -> K = N ) ) |
5 |
|
olc |
|- ( K = N -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) |
6 |
4 5
|
syl6 |
|- ( N = M -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
7 |
6
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
8 |
|
noel |
|- -. K e. (/) |
9 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
10 |
9
|
adantr |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. ZZ ) |
11 |
10
|
zred |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. RR ) |
12 |
11
|
ltm1d |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < N ) |
13 |
|
breq2 |
|- ( N = M -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) |
14 |
13
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) |
15 |
12 14
|
mpbid |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < M ) |
16 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
17 |
|
1zzd |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> 1 e. ZZ ) |
18 |
10 17
|
zsubcld |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) e. ZZ ) |
19 |
|
fzn |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
20 |
16 18 19
|
syl2an2r |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
21 |
15 20
|
mpbid |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( M ... ( N - 1 ) ) = (/) ) |
22 |
21
|
eleq2d |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) <-> K e. (/) ) ) |
23 |
8 22
|
mtbiri |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> -. K e. ( M ... ( N - 1 ) ) ) |
24 |
23
|
pm2.21d |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) -> K e. ( M ... N ) ) ) |
25 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> N e. ( M ... N ) ) |
27 |
|
eleq1 |
|- ( K = N -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
28 |
27
|
adantl |
|- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) |
29 |
26 28
|
mpbird |
|- ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> K e. ( M ... N ) ) |
30 |
29
|
ex |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K = N -> K e. ( M ... N ) ) ) |
31 |
24 30
|
jaod |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = N ) -> K e. ( M ... N ) ) ) |
32 |
7 31
|
impbid |
|- ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
33 |
|
elfzp1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) |
34 |
33
|
adantl |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) |
35 |
9
|
adantr |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
36 |
35
|
zcnd |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. CC ) |
37 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
38 |
36 37
|
syl |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( N - 1 ) + 1 ) = N ) |
39 |
38
|
oveq2d |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
40 |
39
|
eleq2d |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> K e. ( M ... N ) ) ) |
41 |
38
|
eqeq2d |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K = ( ( N - 1 ) + 1 ) <-> K = N ) ) |
42 |
41
|
orbi2d |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
43 |
34 40 42
|
3bitr3d |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |
44 |
|
uzm1 |
|- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
45 |
32 43 44
|
mpjaodan |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |