| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( N = M -> ( N ... N ) = ( M ... N ) ) | 
						
							| 2 | 1 | eleq2d |  |-  ( N = M -> ( K e. ( N ... N ) <-> K e. ( M ... N ) ) ) | 
						
							| 3 |  | elfz1eq |  |-  ( K e. ( N ... N ) -> K = N ) | 
						
							| 4 | 2 3 | biimtrrdi |  |-  ( N = M -> ( K e. ( M ... N ) -> K = N ) ) | 
						
							| 5 |  | olc |  |-  ( K = N -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) | 
						
							| 6 | 4 5 | syl6 |  |-  ( N = M -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) -> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) | 
						
							| 8 |  | noel |  |-  -. K e. (/) | 
						
							| 9 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 10 | 9 | adantr |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. ZZ ) | 
						
							| 11 | 10 | zred |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> N e. RR ) | 
						
							| 12 | 11 | ltm1d |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < N ) | 
						
							| 13 |  | breq2 |  |-  ( N = M -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < N <-> ( N - 1 ) < M ) ) | 
						
							| 15 | 12 14 | mpbid |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) < M ) | 
						
							| 16 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 17 |  | 1zzd |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> 1 e. ZZ ) | 
						
							| 18 | 10 17 | zsubcld |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( N - 1 ) e. ZZ ) | 
						
							| 19 |  | fzn |  |-  ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) | 
						
							| 20 | 16 18 19 | syl2an2r |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) | 
						
							| 21 | 15 20 | mpbid |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( M ... ( N - 1 ) ) = (/) ) | 
						
							| 22 | 21 | eleq2d |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) <-> K e. (/) ) ) | 
						
							| 23 | 8 22 | mtbiri |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> -. K e. ( M ... ( N - 1 ) ) ) | 
						
							| 24 | 23 | pm2.21d |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... ( N - 1 ) ) -> K e. ( M ... N ) ) ) | 
						
							| 25 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> N e. ( M ... N ) ) | 
						
							| 27 |  | eleq1 |  |-  ( K = N -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> ( K e. ( M ... N ) <-> N e. ( M ... N ) ) ) | 
						
							| 29 | 26 28 | mpbird |  |-  ( ( ( N e. ( ZZ>= ` M ) /\ N = M ) /\ K = N ) -> K e. ( M ... N ) ) | 
						
							| 30 | 29 | ex |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K = N -> K e. ( M ... N ) ) ) | 
						
							| 31 | 24 30 | jaod |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = N ) -> K e. ( M ... N ) ) ) | 
						
							| 32 | 7 31 | impbid |  |-  ( ( N e. ( ZZ>= ` M ) /\ N = M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) | 
						
							| 33 |  | elfzp1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 35 | 9 | adantr |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. ZZ ) | 
						
							| 36 | 35 | zcnd |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> N e. CC ) | 
						
							| 37 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 39 | 38 | oveq2d |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) | 
						
							| 40 | 39 | eleq2d |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... ( ( N - 1 ) + 1 ) ) <-> K e. ( M ... N ) ) ) | 
						
							| 41 | 38 | eqeq2d |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K = ( ( N - 1 ) + 1 ) <-> K = N ) ) | 
						
							| 42 | 41 | orbi2d |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( ( K e. ( M ... ( N - 1 ) ) \/ K = ( ( N - 1 ) + 1 ) ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) | 
						
							| 43 | 34 40 42 | 3bitr3d |  |-  ( ( N e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) | 
						
							| 44 |  | uzm1 |  |-  ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) | 
						
							| 45 | 32 43 44 | mpjaodan |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K e. ( M ... ( N - 1 ) ) \/ K = N ) ) ) |