Step |
Hyp |
Ref |
Expression |
1 |
|
fzne1 |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ... N ) ) |
2 |
|
elfzel1 |
|- ( K e. ( ( M + 1 ) ... N ) -> ( M + 1 ) e. ZZ ) |
3 |
|
elfzel2 |
|- ( K e. ( ( M + 1 ) ... N ) -> N e. ZZ ) |
4 |
|
elfzelz |
|- ( K e. ( ( M + 1 ) ... N ) -> K e. ZZ ) |
5 |
|
1zzd |
|- ( K e. ( ( M + 1 ) ... N ) -> 1 e. ZZ ) |
6 |
|
id |
|- ( K e. ( ( M + 1 ) ... N ) -> K e. ( ( M + 1 ) ... N ) ) |
7 |
|
fzsubel |
|- ( ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) ) -> ( K e. ( ( M + 1 ) ... N ) <-> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) ) |
8 |
7
|
biimp3a |
|- ( ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ 1 e. ZZ ) /\ K e. ( ( M + 1 ) ... N ) ) -> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
9 |
2 3 4 5 6 8
|
syl221anc |
|- ( K e. ( ( M + 1 ) ... N ) -> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
10 |
1 9
|
syl |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> ( K - 1 ) e. ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) ) |
11 |
|
elfzel1 |
|- ( K e. ( M ... N ) -> M e. ZZ ) |
12 |
11
|
adantr |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> M e. ZZ ) |
13 |
12
|
zcnd |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> M e. CC ) |
14 |
|
1cnd |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> 1 e. CC ) |
15 |
13 14
|
pncand |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> ( ( M + 1 ) - 1 ) = M ) |
16 |
15
|
oveq1d |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> ( ( ( M + 1 ) - 1 ) ... ( N - 1 ) ) = ( M ... ( N - 1 ) ) ) |
17 |
10 16
|
eleqtrd |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> ( K - 1 ) e. ( M ... ( N - 1 ) ) ) |