Step |
Hyp |
Ref |
Expression |
1 |
|
fzn0 |
|- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) ) |
2 |
|
eluz |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) ) |
3 |
1 2
|
syl5bb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M ... N ) =/= (/) <-> M <_ N ) ) |
4 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
5 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
6 |
|
lenlt |
|- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -. N < M ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> -. N < M ) ) |
8 |
3 7
|
bitr2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. N < M <-> ( M ... N ) =/= (/) ) ) |
9 |
8
|
necon4bbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N < M <-> ( M ... N ) = (/) ) ) |