Metamath Proof Explorer


Theorem fzn0

Description: Properties of a finite interval of integers which is nonempty. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzn0
|- ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( ( M ... N ) =/= (/) <-> E. x x e. ( M ... N ) )
2 elfzuz2
 |-  ( x e. ( M ... N ) -> N e. ( ZZ>= ` M ) )
3 2 exlimiv
 |-  ( E. x x e. ( M ... N ) -> N e. ( ZZ>= ` M ) )
4 1 3 sylbi
 |-  ( ( M ... N ) =/= (/) -> N e. ( ZZ>= ` M ) )
5 eluzfz1
 |-  ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) )
6 5 ne0d
 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) =/= (/) )
7 4 6 impbii
 |-  ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) )