Step |
Hyp |
Ref |
Expression |
1 |
|
df-ne |
|- ( K =/= M <-> -. K = M ) |
2 |
|
elfzuz2 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) |
3 |
|
elfzp12 |
|- ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
4 |
2 3
|
syl |
|- ( K e. ( M ... N ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) |
5 |
4
|
ibi |
|- ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) |
6 |
5
|
orcanai |
|- ( ( K e. ( M ... N ) /\ -. K = M ) -> K e. ( ( M + 1 ) ... N ) ) |
7 |
1 6
|
sylan2b |
|- ( ( K e. ( M ... N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ... N ) ) |