| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ne |  |-  ( K =/= M <-> -. K = M ) | 
						
							| 2 |  | elfzuz2 |  |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 3 |  | elfzp12 |  |-  ( N e. ( ZZ>= ` M ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( K e. ( M ... N ) -> ( K e. ( M ... N ) <-> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) ) | 
						
							| 5 | 4 | ibi |  |-  ( K e. ( M ... N ) -> ( K = M \/ K e. ( ( M + 1 ) ... N ) ) ) | 
						
							| 6 | 5 | orcanai |  |-  ( ( K e. ( M ... N ) /\ -. K = M ) -> K e. ( ( M + 1 ) ... N ) ) | 
						
							| 7 | 1 6 | sylan2b |  |-  ( ( K e. ( M ... N ) /\ K =/= M ) -> K e. ( ( M + 1 ) ... N ) ) |