Step |
Hyp |
Ref |
Expression |
1 |
|
peano2uz |
|- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` K ) ) |
2 |
|
eluzelre |
|- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
3 |
|
ltp1 |
|- ( N e. RR -> N < ( N + 1 ) ) |
4 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
5 |
|
ltnle |
|- ( ( N e. RR /\ ( N + 1 ) e. RR ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
6 |
4 5
|
mpdan |
|- ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
7 |
3 6
|
mpbid |
|- ( N e. RR -> -. ( N + 1 ) <_ N ) |
8 |
2 7
|
syl |
|- ( N e. ( ZZ>= ` M ) -> -. ( N + 1 ) <_ N ) |
9 |
|
elfzle2 |
|- ( ( N + 1 ) e. ( M ... N ) -> ( N + 1 ) <_ N ) |
10 |
8 9
|
nsyl |
|- ( N e. ( ZZ>= ` M ) -> -. ( N + 1 ) e. ( M ... N ) ) |
11 |
10
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( N + 1 ) e. ( M ... N ) ) |
12 |
|
nelneq2 |
|- ( ( ( N + 1 ) e. ( ZZ>= ` K ) /\ -. ( N + 1 ) e. ( M ... N ) ) -> -. ( ZZ>= ` K ) = ( M ... N ) ) |
13 |
1 11 12
|
syl2an2 |
|- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( ZZ>= ` K ) = ( M ... N ) ) |
14 |
|
eqcom |
|- ( ( ZZ>= ` K ) = ( M ... N ) <-> ( M ... N ) = ( ZZ>= ` K ) ) |
15 |
13 14
|
sylnib |
|- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
16 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
17 |
16
|
ad2antrr |
|- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ -. N e. ( ZZ>= ` K ) ) -> N e. ( M ... N ) ) |
18 |
|
nelneq2 |
|- ( ( N e. ( M ... N ) /\ -. N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
19 |
17 18
|
sylancom |
|- ( ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) /\ -. N e. ( ZZ>= ` K ) ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |
20 |
15 19
|
pm2.61dan |
|- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> -. ( M ... N ) = ( ZZ>= ` K ) ) |