Metamath Proof Explorer


Theorem fznn0sub

Description: Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fznn0sub
|- ( K e. ( M ... N ) -> ( N - K ) e. NN0 )

Proof

Step Hyp Ref Expression
1 elfzuz3
 |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) )
2 uznn0sub
 |-  ( N e. ( ZZ>= ` K ) -> ( N - K ) e. NN0 )
3 1 2 syl
 |-  ( K e. ( M ... N ) -> ( N - K ) e. NN0 )