Description: Expressing the singleton of 0 as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
2 | 1 | oveq2i | |- ( 0 ..^ 1 ) = ( 0 ..^ ( 0 + 1 ) ) |
3 | 0z | |- 0 e. ZZ |
|
4 | fzosn | |- ( 0 e. ZZ -> ( 0 ..^ ( 0 + 1 ) ) = { 0 } ) |
|
5 | 3 4 | ax-mp | |- ( 0 ..^ ( 0 + 1 ) ) = { 0 } |
6 | 2 5 | eqtri | |- ( 0 ..^ 1 ) = { 0 } |