| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzoaddel |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( ( 0 + D ) ..^ ( C + D ) ) ) |
| 2 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
| 3 |
|
addlid |
|- ( D e. CC -> ( 0 + D ) = D ) |
| 4 |
3
|
eqcomd |
|- ( D e. CC -> D = ( 0 + D ) ) |
| 5 |
2 4
|
syl |
|- ( D e. ZZ -> D = ( 0 + D ) ) |
| 6 |
5
|
adantl |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> D = ( 0 + D ) ) |
| 7 |
6
|
oveq1d |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D ..^ ( C + D ) ) = ( ( 0 + D ) ..^ ( C + D ) ) ) |
| 8 |
1 7
|
eleqtrrd |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |