Step |
Hyp |
Ref |
Expression |
1 |
|
fzoaddel |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( ( 0 + D ) ..^ ( C + D ) ) ) |
2 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
3 |
|
addid2 |
|- ( D e. CC -> ( 0 + D ) = D ) |
4 |
3
|
eqcomd |
|- ( D e. CC -> D = ( 0 + D ) ) |
5 |
2 4
|
syl |
|- ( D e. ZZ -> D = ( 0 + D ) ) |
6 |
5
|
adantl |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> D = ( 0 + D ) ) |
7 |
6
|
oveq1d |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D ..^ ( C + D ) ) = ( ( 0 + D ) ..^ ( C + D ) ) ) |
8 |
1 7
|
eleqtrrd |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |