Step |
Hyp |
Ref |
Expression |
1 |
|
fzo0addel |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |
2 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
3 |
|
elfzoel2 |
|- ( A e. ( 0 ..^ C ) -> C e. ZZ ) |
4 |
3
|
zcnd |
|- ( A e. ( 0 ..^ C ) -> C e. CC ) |
5 |
|
addcom |
|- ( ( D e. CC /\ C e. CC ) -> ( D + C ) = ( C + D ) ) |
6 |
2 4 5
|
syl2anr |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D + C ) = ( C + D ) ) |
7 |
6
|
oveq2d |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D ..^ ( D + C ) ) = ( D ..^ ( C + D ) ) ) |
8 |
1 7
|
eleqtrrd |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( D + C ) ) ) |