| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzo0addel |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( C + D ) ) ) |
| 2 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
| 3 |
|
elfzoel2 |
|- ( A e. ( 0 ..^ C ) -> C e. ZZ ) |
| 4 |
3
|
zcnd |
|- ( A e. ( 0 ..^ C ) -> C e. CC ) |
| 5 |
|
addcom |
|- ( ( D e. CC /\ C e. CC ) -> ( D + C ) = ( C + D ) ) |
| 6 |
2 4 5
|
syl2anr |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D + C ) = ( C + D ) ) |
| 7 |
6
|
oveq2d |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( D ..^ ( D + C ) ) = ( D ..^ ( C + D ) ) ) |
| 8 |
1 7
|
eleqtrrd |
|- ( ( A e. ( 0 ..^ C ) /\ D e. ZZ ) -> ( A + D ) e. ( D ..^ ( D + C ) ) ) |