Metamath Proof Explorer


Theorem fzo0dvdseq

Description: Zero is the only one of the first A nonnegative integers that is divisible by A . (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Assertion fzo0dvdseq
|- ( B e. ( 0 ..^ A ) -> ( A || B <-> B = 0 ) )

Proof

Step Hyp Ref Expression
1 elfzolt2
 |-  ( B e. ( 0 ..^ A ) -> B < A )
2 elfzoelz
 |-  ( B e. ( 0 ..^ A ) -> B e. ZZ )
3 2 zred
 |-  ( B e. ( 0 ..^ A ) -> B e. RR )
4 elfzoel2
 |-  ( B e. ( 0 ..^ A ) -> A e. ZZ )
5 4 zred
 |-  ( B e. ( 0 ..^ A ) -> A e. RR )
6 3 5 ltnled
 |-  ( B e. ( 0 ..^ A ) -> ( B < A <-> -. A <_ B ) )
7 1 6 mpbid
 |-  ( B e. ( 0 ..^ A ) -> -. A <_ B )
8 7 adantr
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A <_ B )
9 elfzonn0
 |-  ( B e. ( 0 ..^ A ) -> B e. NN0 )
10 9 adantr
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN0 )
11 simpr
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B =/= 0 )
12 eldifsn
 |-  ( B e. ( NN0 \ { 0 } ) <-> ( B e. NN0 /\ B =/= 0 ) )
13 10 11 12 sylanbrc
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. ( NN0 \ { 0 } ) )
14 dfn2
 |-  NN = ( NN0 \ { 0 } )
15 13 14 eleqtrrdi
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN )
16 dvdsle
 |-  ( ( A e. ZZ /\ B e. NN ) -> ( A || B -> A <_ B ) )
17 4 15 16 syl2an2r
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> ( A || B -> A <_ B ) )
18 8 17 mtod
 |-  ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A || B )
19 18 ex
 |-  ( B e. ( 0 ..^ A ) -> ( B =/= 0 -> -. A || B ) )
20 19 necon4ad
 |-  ( B e. ( 0 ..^ A ) -> ( A || B -> B = 0 ) )
21 dvds0
 |-  ( A e. ZZ -> A || 0 )
22 4 21 syl
 |-  ( B e. ( 0 ..^ A ) -> A || 0 )
23 breq2
 |-  ( B = 0 -> ( A || B <-> A || 0 ) )
24 22 23 syl5ibrcom
 |-  ( B e. ( 0 ..^ A ) -> ( B = 0 -> A || B ) )
25 20 24 impbid
 |-  ( B e. ( 0 ..^ A ) -> ( A || B <-> B = 0 ) )