Step |
Hyp |
Ref |
Expression |
1 |
|
elfzolt2 |
|- ( B e. ( 0 ..^ A ) -> B < A ) |
2 |
|
elfzoelz |
|- ( B e. ( 0 ..^ A ) -> B e. ZZ ) |
3 |
2
|
zred |
|- ( B e. ( 0 ..^ A ) -> B e. RR ) |
4 |
|
elfzoel2 |
|- ( B e. ( 0 ..^ A ) -> A e. ZZ ) |
5 |
4
|
zred |
|- ( B e. ( 0 ..^ A ) -> A e. RR ) |
6 |
3 5
|
ltnled |
|- ( B e. ( 0 ..^ A ) -> ( B < A <-> -. A <_ B ) ) |
7 |
1 6
|
mpbid |
|- ( B e. ( 0 ..^ A ) -> -. A <_ B ) |
8 |
7
|
adantr |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A <_ B ) |
9 |
|
elfzonn0 |
|- ( B e. ( 0 ..^ A ) -> B e. NN0 ) |
10 |
9
|
adantr |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN0 ) |
11 |
|
simpr |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B =/= 0 ) |
12 |
|
eldifsn |
|- ( B e. ( NN0 \ { 0 } ) <-> ( B e. NN0 /\ B =/= 0 ) ) |
13 |
10 11 12
|
sylanbrc |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. ( NN0 \ { 0 } ) ) |
14 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
15 |
13 14
|
eleqtrrdi |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> B e. NN ) |
16 |
|
dvdsle |
|- ( ( A e. ZZ /\ B e. NN ) -> ( A || B -> A <_ B ) ) |
17 |
4 15 16
|
syl2an2r |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> ( A || B -> A <_ B ) ) |
18 |
8 17
|
mtod |
|- ( ( B e. ( 0 ..^ A ) /\ B =/= 0 ) -> -. A || B ) |
19 |
18
|
ex |
|- ( B e. ( 0 ..^ A ) -> ( B =/= 0 -> -. A || B ) ) |
20 |
19
|
necon4ad |
|- ( B e. ( 0 ..^ A ) -> ( A || B -> B = 0 ) ) |
21 |
|
dvds0 |
|- ( A e. ZZ -> A || 0 ) |
22 |
4 21
|
syl |
|- ( B e. ( 0 ..^ A ) -> A || 0 ) |
23 |
|
breq2 |
|- ( B = 0 -> ( A || B <-> A || 0 ) ) |
24 |
22 23
|
syl5ibrcom |
|- ( B e. ( 0 ..^ A ) -> ( B = 0 -> A || B ) ) |
25 |
20 24
|
impbid |
|- ( B e. ( 0 ..^ A ) -> ( A || B <-> B = 0 ) ) |