Metamath Proof Explorer


Theorem fzo0n0

Description: A half-open integer range based at 0 is nonempty precisely if the upper bound is a positive integer. (Contributed by Stefan O'Rear, 15-Aug-2015) (Revised by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzo0n0
|- ( ( 0 ..^ A ) =/= (/) <-> A e. NN )

Proof

Step Hyp Ref Expression
1 fzon0
 |-  ( ( 0 ..^ A ) =/= (/) <-> 0 e. ( 0 ..^ A ) )
2 lbfzo0
 |-  ( 0 e. ( 0 ..^ A ) <-> A e. NN )
3 1 2 bitri
 |-  ( ( 0 ..^ A ) =/= (/) <-> A e. NN )