| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|- 2 e. ZZ |
| 2 |
|
fzoval |
|- ( 2 e. ZZ -> ( 0 ..^ 2 ) = ( 0 ... ( 2 - 1 ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( 0 ..^ 2 ) = ( 0 ... ( 2 - 1 ) ) |
| 4 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 5 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 6 |
4 5
|
eqtr4i |
|- ( 2 - 1 ) = ( 0 + 1 ) |
| 7 |
6
|
oveq2i |
|- ( 0 ... ( 2 - 1 ) ) = ( 0 ... ( 0 + 1 ) ) |
| 8 |
|
0z |
|- 0 e. ZZ |
| 9 |
|
fzpr |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
| 10 |
5
|
preq2i |
|- { 0 , ( 0 + 1 ) } = { 0 , 1 } |
| 11 |
9 10
|
eqtrdi |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } ) |
| 12 |
8 11
|
ax-mp |
|- ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } |
| 13 |
3 7 12
|
3eqtri |
|- ( 0 ..^ 2 ) = { 0 , 1 } |