Metamath Proof Explorer


Theorem fzo0to2pr

Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017)

Ref Expression
Assertion fzo0to2pr
|- ( 0 ..^ 2 ) = { 0 , 1 }

Proof

Step Hyp Ref Expression
1 2z
 |-  2 e. ZZ
2 fzoval
 |-  ( 2 e. ZZ -> ( 0 ..^ 2 ) = ( 0 ... ( 2 - 1 ) ) )
3 1 2 ax-mp
 |-  ( 0 ..^ 2 ) = ( 0 ... ( 2 - 1 ) )
4 2m1e1
 |-  ( 2 - 1 ) = 1
5 0p1e1
 |-  ( 0 + 1 ) = 1
6 4 5 eqtr4i
 |-  ( 2 - 1 ) = ( 0 + 1 )
7 6 oveq2i
 |-  ( 0 ... ( 2 - 1 ) ) = ( 0 ... ( 0 + 1 ) )
8 0z
 |-  0 e. ZZ
9 fzpr
 |-  ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } )
10 5 preq2i
 |-  { 0 , ( 0 + 1 ) } = { 0 , 1 }
11 9 10 eqtrdi
 |-  ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , 1 } )
12 8 11 ax-mp
 |-  ( 0 ... ( 0 + 1 ) ) = { 0 , 1 }
13 3 7 12 3eqtri
 |-  ( 0 ..^ 2 ) = { 0 , 1 }