Metamath Proof Explorer


Theorem fzo0to3tp

Description: A half-open integer range from 0 to 3 is an unordered triple. (Contributed by Alexander van der Vekens, 9-Nov-2017)

Ref Expression
Assertion fzo0to3tp
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 }

Proof

Step Hyp Ref Expression
1 3z
 |-  3 e. ZZ
2 fzoval
 |-  ( 3 e. ZZ -> ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) )
3 1 2 ax-mp
 |-  ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) )
4 3m1e2
 |-  ( 3 - 1 ) = 2
5 2cn
 |-  2 e. CC
6 5 addid2i
 |-  ( 0 + 2 ) = 2
7 4 6 eqtr4i
 |-  ( 3 - 1 ) = ( 0 + 2 )
8 7 oveq2i
 |-  ( 0 ... ( 3 - 1 ) ) = ( 0 ... ( 0 + 2 ) )
9 0z
 |-  0 e. ZZ
10 fztp
 |-  ( 0 e. ZZ -> ( 0 ... ( 0 + 2 ) ) = { 0 , ( 0 + 1 ) , ( 0 + 2 ) } )
11 eqidd
 |-  ( 0 e. ZZ -> 0 = 0 )
12 0p1e1
 |-  ( 0 + 1 ) = 1
13 12 a1i
 |-  ( 0 e. ZZ -> ( 0 + 1 ) = 1 )
14 6 a1i
 |-  ( 0 e. ZZ -> ( 0 + 2 ) = 2 )
15 11 13 14 tpeq123d
 |-  ( 0 e. ZZ -> { 0 , ( 0 + 1 ) , ( 0 + 2 ) } = { 0 , 1 , 2 } )
16 10 15 eqtrd
 |-  ( 0 e. ZZ -> ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 } )
17 9 16 ax-mp
 |-  ( 0 ... ( 0 + 2 ) ) = { 0 , 1 , 2 }
18 3 8 17 3eqtri
 |-  ( 0 ..^ 3 ) = { 0 , 1 , 2 }