Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo2 |
|- ( K e. ( 1 ..^ N ) <-> ( K e. ( ZZ>= ` 1 ) /\ N e. ZZ /\ K < N ) ) |
2 |
|
elnnuz |
|- ( K e. NN <-> K e. ( ZZ>= ` 1 ) ) |
3 |
|
nnnn0 |
|- ( K e. NN -> K e. NN0 ) |
4 |
3
|
adantr |
|- ( ( K e. NN /\ N e. ZZ ) -> K e. NN0 ) |
5 |
4
|
adantr |
|- ( ( ( K e. NN /\ N e. ZZ ) /\ K < N ) -> K e. NN0 ) |
6 |
|
nngt0 |
|- ( K e. NN -> 0 < K ) |
7 |
|
0red |
|- ( ( N e. ZZ /\ K e. NN ) -> 0 e. RR ) |
8 |
|
nnre |
|- ( K e. NN -> K e. RR ) |
9 |
8
|
adantl |
|- ( ( N e. ZZ /\ K e. NN ) -> K e. RR ) |
10 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
11 |
10
|
adantr |
|- ( ( N e. ZZ /\ K e. NN ) -> N e. RR ) |
12 |
|
lttr |
|- ( ( 0 e. RR /\ K e. RR /\ N e. RR ) -> ( ( 0 < K /\ K < N ) -> 0 < N ) ) |
13 |
7 9 11 12
|
syl3anc |
|- ( ( N e. ZZ /\ K e. NN ) -> ( ( 0 < K /\ K < N ) -> 0 < N ) ) |
14 |
|
elnnz |
|- ( N e. NN <-> ( N e. ZZ /\ 0 < N ) ) |
15 |
14
|
simplbi2 |
|- ( N e. ZZ -> ( 0 < N -> N e. NN ) ) |
16 |
15
|
adantr |
|- ( ( N e. ZZ /\ K e. NN ) -> ( 0 < N -> N e. NN ) ) |
17 |
13 16
|
syld |
|- ( ( N e. ZZ /\ K e. NN ) -> ( ( 0 < K /\ K < N ) -> N e. NN ) ) |
18 |
17
|
exp4b |
|- ( N e. ZZ -> ( K e. NN -> ( 0 < K -> ( K < N -> N e. NN ) ) ) ) |
19 |
18
|
com13 |
|- ( 0 < K -> ( K e. NN -> ( N e. ZZ -> ( K < N -> N e. NN ) ) ) ) |
20 |
6 19
|
mpcom |
|- ( K e. NN -> ( N e. ZZ -> ( K < N -> N e. NN ) ) ) |
21 |
20
|
imp31 |
|- ( ( ( K e. NN /\ N e. ZZ ) /\ K < N ) -> N e. NN ) |
22 |
|
simpr |
|- ( ( ( K e. NN /\ N e. ZZ ) /\ K < N ) -> K < N ) |
23 |
5 21 22
|
3jca |
|- ( ( ( K e. NN /\ N e. ZZ ) /\ K < N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
24 |
23
|
exp31 |
|- ( K e. NN -> ( N e. ZZ -> ( K < N -> ( K e. NN0 /\ N e. NN /\ K < N ) ) ) ) |
25 |
2 24
|
sylbir |
|- ( K e. ( ZZ>= ` 1 ) -> ( N e. ZZ -> ( K < N -> ( K e. NN0 /\ N e. NN /\ K < N ) ) ) ) |
26 |
25
|
3imp |
|- ( ( K e. ( ZZ>= ` 1 ) /\ N e. ZZ /\ K < N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
27 |
|
elfzo0 |
|- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
28 |
26 27
|
sylibr |
|- ( ( K e. ( ZZ>= ` 1 ) /\ N e. ZZ /\ K < N ) -> K e. ( 0 ..^ N ) ) |
29 |
|
nnne0 |
|- ( K e. NN -> K =/= 0 ) |
30 |
2 29
|
sylbir |
|- ( K e. ( ZZ>= ` 1 ) -> K =/= 0 ) |
31 |
30
|
3ad2ant1 |
|- ( ( K e. ( ZZ>= ` 1 ) /\ N e. ZZ /\ K < N ) -> K =/= 0 ) |
32 |
28 31
|
jca |
|- ( ( K e. ( ZZ>= ` 1 ) /\ N e. ZZ /\ K < N ) -> ( K e. ( 0 ..^ N ) /\ K =/= 0 ) ) |
33 |
1 32
|
sylbi |
|- ( K e. ( 1 ..^ N ) -> ( K e. ( 0 ..^ N ) /\ K =/= 0 ) ) |
34 |
|
elnnne0 |
|- ( K e. NN <-> ( K e. NN0 /\ K =/= 0 ) ) |
35 |
|
nnge1 |
|- ( K e. NN -> 1 <_ K ) |
36 |
34 35
|
sylbir |
|- ( ( K e. NN0 /\ K =/= 0 ) -> 1 <_ K ) |
37 |
36
|
3ad2antl1 |
|- ( ( ( K e. NN0 /\ N e. NN /\ K < N ) /\ K =/= 0 ) -> 1 <_ K ) |
38 |
|
simpl3 |
|- ( ( ( K e. NN0 /\ N e. NN /\ K < N ) /\ K =/= 0 ) -> K < N ) |
39 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
40 |
39
|
adantr |
|- ( ( K e. NN0 /\ N e. NN ) -> K e. ZZ ) |
41 |
|
1zzd |
|- ( ( K e. NN0 /\ N e. NN ) -> 1 e. ZZ ) |
42 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
43 |
42
|
adantl |
|- ( ( K e. NN0 /\ N e. NN ) -> N e. ZZ ) |
44 |
40 41 43
|
3jca |
|- ( ( K e. NN0 /\ N e. NN ) -> ( K e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) ) |
45 |
44
|
3adant3 |
|- ( ( K e. NN0 /\ N e. NN /\ K < N ) -> ( K e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) ) |
46 |
45
|
adantr |
|- ( ( ( K e. NN0 /\ N e. NN /\ K < N ) /\ K =/= 0 ) -> ( K e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) ) |
47 |
|
elfzo |
|- ( ( K e. ZZ /\ 1 e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ..^ N ) <-> ( 1 <_ K /\ K < N ) ) ) |
48 |
46 47
|
syl |
|- ( ( ( K e. NN0 /\ N e. NN /\ K < N ) /\ K =/= 0 ) -> ( K e. ( 1 ..^ N ) <-> ( 1 <_ K /\ K < N ) ) ) |
49 |
37 38 48
|
mpbir2and |
|- ( ( ( K e. NN0 /\ N e. NN /\ K < N ) /\ K =/= 0 ) -> K e. ( 1 ..^ N ) ) |
50 |
27 49
|
sylanb |
|- ( ( K e. ( 0 ..^ N ) /\ K =/= 0 ) -> K e. ( 1 ..^ N ) ) |
51 |
33 50
|
impbii |
|- ( K e. ( 1 ..^ N ) <-> ( K e. ( 0 ..^ N ) /\ K =/= 0 ) ) |