| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4z |  |-  4 e. ZZ | 
						
							| 2 |  | fzoval |  |-  ( 4 e. ZZ -> ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( 1 ..^ 4 ) = ( 1 ... ( 4 - 1 ) ) | 
						
							| 4 |  | 4m1e3 |  |-  ( 4 - 1 ) = 3 | 
						
							| 5 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 | 6 7 | addcomi |  |-  ( 2 + 1 ) = ( 1 + 2 ) | 
						
							| 9 | 4 5 8 | 3eqtri |  |-  ( 4 - 1 ) = ( 1 + 2 ) | 
						
							| 10 | 9 | oveq2i |  |-  ( 1 ... ( 4 - 1 ) ) = ( 1 ... ( 1 + 2 ) ) | 
						
							| 11 |  | 1z |  |-  1 e. ZZ | 
						
							| 12 |  | fztp |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , ( 1 + 1 ) , ( 1 + 2 ) } ) | 
						
							| 13 |  | eqidd |  |-  ( 1 e. ZZ -> 1 = 1 ) | 
						
							| 14 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 15 | 14 | a1i |  |-  ( 1 e. ZZ -> ( 1 + 1 ) = 2 ) | 
						
							| 16 |  | 1p2e3 |  |-  ( 1 + 2 ) = 3 | 
						
							| 17 | 16 | a1i |  |-  ( 1 e. ZZ -> ( 1 + 2 ) = 3 ) | 
						
							| 18 | 13 15 17 | tpeq123d |  |-  ( 1 e. ZZ -> { 1 , ( 1 + 1 ) , ( 1 + 2 ) } = { 1 , 2 , 3 } ) | 
						
							| 19 | 12 18 | eqtrd |  |-  ( 1 e. ZZ -> ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } ) | 
						
							| 20 | 11 19 | ax-mp |  |-  ( 1 ... ( 1 + 2 ) ) = { 1 , 2 , 3 } | 
						
							| 21 | 3 10 20 | 3eqtri |  |-  ( 1 ..^ 4 ) = { 1 , 2 , 3 } |