| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzoaddel | 
							 |-  ( ( A e. ( 0 ..^ ( B - C ) ) /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3adant2 | 
							 |-  ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							zcn | 
							 |-  ( B e. ZZ -> B e. CC )  | 
						
						
							| 4 | 
							
								
							 | 
							zcn | 
							 |-  ( C e. ZZ -> C e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							addlid | 
							 |-  ( C e. CC -> ( 0 + C ) = C )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							 |-  ( ( B e. CC /\ C e. CC ) -> ( 0 + C ) = C )  | 
						
						
							| 7 | 
							
								
							 | 
							npcan | 
							 |-  ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							oveq12d | 
							 |-  ( ( B e. CC /\ C e. CC ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) )  | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							syl2an | 
							 |-  ( ( B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3adant1 | 
							 |-  ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							eleqtrd | 
							 |-  ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( C ..^ B ) )  |