Step |
Hyp |
Ref |
Expression |
1 |
|
fzoaddel |
|- ( ( A e. ( 0 ..^ ( B - C ) ) /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) ) |
2 |
1
|
3adant2 |
|- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) ) |
3 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
4 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
5 |
|
addid2 |
|- ( C e. CC -> ( 0 + C ) = C ) |
6 |
5
|
adantl |
|- ( ( B e. CC /\ C e. CC ) -> ( 0 + C ) = C ) |
7 |
|
npcan |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
8 |
6 7
|
oveq12d |
|- ( ( B e. CC /\ C e. CC ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
9 |
3 4 8
|
syl2an |
|- ( ( B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
10 |
9
|
3adant1 |
|- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( ( 0 + C ) ..^ ( ( B - C ) + C ) ) = ( C ..^ B ) ) |
11 |
2 10
|
eleqtrd |
|- ( ( A e. ( 0 ..^ ( B - C ) ) /\ B e. ZZ /\ C e. ZZ ) -> ( A + C ) e. ( C ..^ B ) ) |