| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzoel2 |  |-  ( B e. ( C ..^ D ) -> D e. ZZ ) | 
						
							| 2 |  | elfzoel1 |  |-  ( B e. ( C ..^ D ) -> C e. ZZ ) | 
						
							| 3 | 1 2 | zsubcld |  |-  ( B e. ( C ..^ D ) -> ( D - C ) e. ZZ ) | 
						
							| 4 |  | elfzoelz |  |-  ( A e. ( C ..^ D ) -> A e. ZZ ) | 
						
							| 5 |  | elfzoelz |  |-  ( B e. ( C ..^ D ) -> B e. ZZ ) | 
						
							| 6 |  | zsubcl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. ZZ ) | 
						
							| 8 |  | dvdsabsb |  |-  ( ( ( D - C ) e. ZZ /\ ( A - B ) e. ZZ ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) | 
						
							| 9 | 3 7 8 | syl2an2 |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( D - C ) || ( abs ` ( A - B ) ) ) ) | 
						
							| 10 |  | fzomaxdif |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) ) | 
						
							| 11 |  | fzo0dvdseq |  |-  ( ( abs ` ( A - B ) ) e. ( 0 ..^ ( D - C ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( abs ` ( A - B ) ) <-> ( abs ` ( A - B ) ) = 0 ) ) | 
						
							| 13 | 9 12 | bitrd |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> ( abs ` ( A - B ) ) = 0 ) ) | 
						
							| 14 | 4 | zcnd |  |-  ( A e. ( C ..^ D ) -> A e. CC ) | 
						
							| 15 | 5 | zcnd |  |-  ( B e. ( C ..^ D ) -> B e. CC ) | 
						
							| 16 |  | subcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) | 
						
							| 17 | 14 15 16 | syl2an |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( A - B ) e. CC ) | 
						
							| 18 | 17 | abs00ad |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> ( A - B ) = 0 ) ) | 
						
							| 19 |  | subeq0 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) | 
						
							| 20 | 14 15 19 | syl2an |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( A - B ) = 0 <-> A = B ) ) | 
						
							| 21 | 18 20 | bitrd |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( abs ` ( A - B ) ) = 0 <-> A = B ) ) | 
						
							| 22 | 13 21 | bitrd |  |-  ( ( A e. ( C ..^ D ) /\ B e. ( C ..^ D ) ) -> ( ( D - C ) || ( A - B ) <-> A = B ) ) |