Metamath Proof Explorer


Theorem fzodisj

Description: Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion fzodisj
|- ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/)

Proof

Step Hyp Ref Expression
1 disj1
 |-  ( ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/) <-> A. x ( x e. ( A ..^ B ) -> -. x e. ( B ..^ C ) ) )
2 elfzolt2
 |-  ( x e. ( A ..^ B ) -> x < B )
3 elfzoelz
 |-  ( x e. ( A ..^ B ) -> x e. ZZ )
4 3 zred
 |-  ( x e. ( A ..^ B ) -> x e. RR )
5 elfzoel2
 |-  ( x e. ( A ..^ B ) -> B e. ZZ )
6 5 zred
 |-  ( x e. ( A ..^ B ) -> B e. RR )
7 4 6 ltnled
 |-  ( x e. ( A ..^ B ) -> ( x < B <-> -. B <_ x ) )
8 2 7 mpbid
 |-  ( x e. ( A ..^ B ) -> -. B <_ x )
9 elfzole1
 |-  ( x e. ( B ..^ C ) -> B <_ x )
10 8 9 nsyl
 |-  ( x e. ( A ..^ B ) -> -. x e. ( B ..^ C ) )
11 1 10 mpgbir
 |-  ( ( A ..^ B ) i^i ( B ..^ C ) ) = (/)