Metamath Proof Explorer


Theorem fzodisjsn

Description: A half-open integer range and the singleton of its upper bound are disjoint. (Contributed by AV, 7-Mar-2021)

Ref Expression
Assertion fzodisjsn
|- ( ( A ..^ B ) i^i { B } ) = (/)

Proof

Step Hyp Ref Expression
1 disj1
 |-  ( ( ( A ..^ B ) i^i { B } ) = (/) <-> A. x ( x e. ( A ..^ B ) -> -. x e. { B } ) )
2 elfzoelz
 |-  ( x e. ( A ..^ B ) -> x e. ZZ )
3 2 zred
 |-  ( x e. ( A ..^ B ) -> x e. RR )
4 elfzolt2
 |-  ( x e. ( A ..^ B ) -> x < B )
5 3 4 ltned
 |-  ( x e. ( A ..^ B ) -> x =/= B )
6 5 neneqd
 |-  ( x e. ( A ..^ B ) -> -. x = B )
7 elsni
 |-  ( x e. { B } -> x = B )
8 6 7 nsyl
 |-  ( x e. ( A ..^ B ) -> -. x e. { B } )
9 1 8 mpgbir
 |-  ( ( A ..^ B ) i^i { B } ) = (/)