| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. ( A ..^ B ) -> A e. ( A ..^ B ) ) |
| 2 |
|
elfzoel2 |
|- ( A e. ( A ..^ B ) -> B e. ZZ ) |
| 3 |
|
fzoval |
|- ( B e. ZZ -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
| 4 |
2 3
|
syl |
|- ( A e. ( A ..^ B ) -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
| 5 |
1 4
|
eleqtrd |
|- ( A e. ( A ..^ B ) -> A e. ( A ... ( B - 1 ) ) ) |
| 6 |
|
elfzuz3 |
|- ( A e. ( A ... ( B - 1 ) ) -> ( B - 1 ) e. ( ZZ>= ` A ) ) |
| 7 |
5 6
|
syl |
|- ( A e. ( A ..^ B ) -> ( B - 1 ) e. ( ZZ>= ` A ) ) |
| 8 |
|
eluzfz2 |
|- ( ( B - 1 ) e. ( ZZ>= ` A ) -> ( B - 1 ) e. ( A ... ( B - 1 ) ) ) |
| 9 |
7 8
|
syl |
|- ( A e. ( A ..^ B ) -> ( B - 1 ) e. ( A ... ( B - 1 ) ) ) |
| 10 |
9 4
|
eleqtrrd |
|- ( A e. ( A ..^ B ) -> ( B - 1 ) e. ( A ..^ B ) ) |