| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 2 |
1
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 3 |
|
fzfi |
|- ( M ... ( N - 1 ) ) e. Fin |
| 4 |
2 3
|
eqeltrdi |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) e. Fin ) |
| 5 |
|
fzof |
|- ..^ : ( ZZ X. ZZ ) --> ~P ZZ |
| 6 |
5
|
fdmi |
|- dom ..^ = ( ZZ X. ZZ ) |
| 7 |
6
|
ndmov |
|- ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = (/) ) |
| 8 |
|
0fi |
|- (/) e. Fin |
| 9 |
7 8
|
eqeltrdi |
|- ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) e. Fin ) |
| 10 |
4 9
|
pm2.61i |
|- ( M ..^ N ) e. Fin |