Step |
Hyp |
Ref |
Expression |
1 |
|
elfz2nn0 |
|- ( K e. ( 0 ... M ) <-> ( K e. NN0 /\ M e. NN0 /\ K <_ M ) ) |
2 |
|
simpl1 |
|- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> K e. NN0 ) |
3 |
|
necom |
|- ( K =/= M <-> M =/= K ) |
4 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
5 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
6 |
|
ltlen |
|- ( ( K e. RR /\ M e. RR ) -> ( K < M <-> ( K <_ M /\ M =/= K ) ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K < M <-> ( K <_ M /\ M =/= K ) ) ) |
8 |
7
|
bicomd |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) <-> K < M ) ) |
9 |
|
elnn0z |
|- ( K e. NN0 <-> ( K e. ZZ /\ 0 <_ K ) ) |
10 |
|
0red |
|- ( ( K e. ZZ /\ M e. NN0 ) -> 0 e. RR ) |
11 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
12 |
11
|
adantr |
|- ( ( K e. ZZ /\ M e. NN0 ) -> K e. RR ) |
13 |
5
|
adantl |
|- ( ( K e. ZZ /\ M e. NN0 ) -> M e. RR ) |
14 |
|
lelttr |
|- ( ( 0 e. RR /\ K e. RR /\ M e. RR ) -> ( ( 0 <_ K /\ K < M ) -> 0 < M ) ) |
15 |
10 12 13 14
|
syl3anc |
|- ( ( K e. ZZ /\ M e. NN0 ) -> ( ( 0 <_ K /\ K < M ) -> 0 < M ) ) |
16 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
17 |
|
elnnz |
|- ( M e. NN <-> ( M e. ZZ /\ 0 < M ) ) |
18 |
17
|
simplbi2 |
|- ( M e. ZZ -> ( 0 < M -> M e. NN ) ) |
19 |
16 18
|
syl |
|- ( M e. NN0 -> ( 0 < M -> M e. NN ) ) |
20 |
19
|
adantl |
|- ( ( K e. ZZ /\ M e. NN0 ) -> ( 0 < M -> M e. NN ) ) |
21 |
15 20
|
syld |
|- ( ( K e. ZZ /\ M e. NN0 ) -> ( ( 0 <_ K /\ K < M ) -> M e. NN ) ) |
22 |
21
|
expd |
|- ( ( K e. ZZ /\ M e. NN0 ) -> ( 0 <_ K -> ( K < M -> M e. NN ) ) ) |
23 |
22
|
impancom |
|- ( ( K e. ZZ /\ 0 <_ K ) -> ( M e. NN0 -> ( K < M -> M e. NN ) ) ) |
24 |
9 23
|
sylbi |
|- ( K e. NN0 -> ( M e. NN0 -> ( K < M -> M e. NN ) ) ) |
25 |
24
|
imp |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K < M -> M e. NN ) ) |
26 |
8 25
|
sylbid |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) -> M e. NN ) ) |
27 |
26
|
expd |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K <_ M -> ( M =/= K -> M e. NN ) ) ) |
28 |
3 27
|
syl7bi |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K <_ M -> ( K =/= M -> M e. NN ) ) ) |
29 |
28
|
3impia |
|- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> M e. NN ) ) |
30 |
29
|
imp |
|- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> M e. NN ) |
31 |
8
|
biimpd |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( K <_ M /\ M =/= K ) -> K < M ) ) |
32 |
31
|
exp4b |
|- ( K e. NN0 -> ( M e. NN0 -> ( K <_ M -> ( M =/= K -> K < M ) ) ) ) |
33 |
32
|
3imp |
|- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( M =/= K -> K < M ) ) |
34 |
3 33
|
syl5bi |
|- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> K < M ) ) |
35 |
34
|
imp |
|- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> K < M ) |
36 |
2 30 35
|
3jca |
|- ( ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) /\ K =/= M ) -> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
37 |
36
|
ex |
|- ( ( K e. NN0 /\ M e. NN0 /\ K <_ M ) -> ( K =/= M -> ( K e. NN0 /\ M e. NN /\ K < M ) ) ) |
38 |
1 37
|
sylbi |
|- ( K e. ( 0 ... M ) -> ( K =/= M -> ( K e. NN0 /\ M e. NN /\ K < M ) ) ) |
39 |
38
|
impcom |
|- ( ( K =/= M /\ K e. ( 0 ... M ) ) -> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
40 |
|
elfzo0 |
|- ( K e. ( 0 ..^ M ) <-> ( K e. NN0 /\ M e. NN /\ K < M ) ) |
41 |
39 40
|
sylibr |
|- ( ( K =/= M /\ K e. ( 0 ... M ) ) -> K e. ( 0 ..^ M ) ) |