| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzoel1 |
|- ( C e. ( A ..^ B ) -> A e. ZZ ) |
| 2 |
|
uzid |
|- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
| 3 |
|
peano2uz |
|- ( A e. ( ZZ>= ` A ) -> ( A + 1 ) e. ( ZZ>= ` A ) ) |
| 4 |
|
fzoss1 |
|- ( ( A + 1 ) e. ( ZZ>= ` A ) -> ( ( A + 1 ) ..^ ( B + 1 ) ) C_ ( A ..^ ( B + 1 ) ) ) |
| 5 |
1 2 3 4
|
4syl |
|- ( C e. ( A ..^ B ) -> ( ( A + 1 ) ..^ ( B + 1 ) ) C_ ( A ..^ ( B + 1 ) ) ) |
| 6 |
|
1z |
|- 1 e. ZZ |
| 7 |
|
fzoaddel |
|- ( ( C e. ( A ..^ B ) /\ 1 e. ZZ ) -> ( C + 1 ) e. ( ( A + 1 ) ..^ ( B + 1 ) ) ) |
| 8 |
6 7
|
mpan2 |
|- ( C e. ( A ..^ B ) -> ( C + 1 ) e. ( ( A + 1 ) ..^ ( B + 1 ) ) ) |
| 9 |
5 8
|
sseldd |
|- ( C e. ( A ..^ B ) -> ( C + 1 ) e. ( A ..^ ( B + 1 ) ) ) |
| 10 |
|
elfzoel2 |
|- ( C e. ( A ..^ B ) -> B e. ZZ ) |
| 11 |
|
fzval3 |
|- ( B e. ZZ -> ( A ... B ) = ( A ..^ ( B + 1 ) ) ) |
| 12 |
10 11
|
syl |
|- ( C e. ( A ..^ B ) -> ( A ... B ) = ( A ..^ ( B + 1 ) ) ) |
| 13 |
9 12
|
eleqtrrd |
|- ( C e. ( A ..^ B ) -> ( C + 1 ) e. ( A ... B ) ) |