| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzofzp1 |
|- ( C e. ( A ..^ B ) -> ( C + 1 ) e. ( A ... B ) ) |
| 2 |
|
simpl |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( ZZ>= ` A ) ) |
| 3 |
|
eluzelz |
|- ( C e. ( ZZ>= ` A ) -> C e. ZZ ) |
| 4 |
|
elfzuz3 |
|- ( ( C + 1 ) e. ( A ... B ) -> B e. ( ZZ>= ` ( C + 1 ) ) ) |
| 5 |
|
eluzp1m1 |
|- ( ( C e. ZZ /\ B e. ( ZZ>= ` ( C + 1 ) ) ) -> ( B - 1 ) e. ( ZZ>= ` C ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> ( B - 1 ) e. ( ZZ>= ` C ) ) |
| 7 |
|
elfzuzb |
|- ( C e. ( A ... ( B - 1 ) ) <-> ( C e. ( ZZ>= ` A ) /\ ( B - 1 ) e. ( ZZ>= ` C ) ) ) |
| 8 |
2 6 7
|
sylanbrc |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( A ... ( B - 1 ) ) ) |
| 9 |
|
elfzel2 |
|- ( ( C + 1 ) e. ( A ... B ) -> B e. ZZ ) |
| 10 |
9
|
adantl |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> B e. ZZ ) |
| 11 |
|
fzoval |
|- ( B e. ZZ -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
| 12 |
10 11
|
syl |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> ( A ..^ B ) = ( A ... ( B - 1 ) ) ) |
| 13 |
8 12
|
eleqtrrd |
|- ( ( C e. ( ZZ>= ` A ) /\ ( C + 1 ) e. ( A ... B ) ) -> C e. ( A ..^ B ) ) |
| 14 |
13
|
ex |
|- ( C e. ( ZZ>= ` A ) -> ( ( C + 1 ) e. ( A ... B ) -> C e. ( A ..^ B ) ) ) |
| 15 |
1 14
|
impbid2 |
|- ( C e. ( ZZ>= ` A ) -> ( C e. ( A ..^ B ) <-> ( C + 1 ) e. ( A ... B ) ) ) |