Metamath Proof Explorer


Theorem fzolb

Description: The left endpoint of a half-open integer interval is in the set iff the two arguments are integers with M < N . This provides an alternative notation for the "strict upper integer" predicate by analogy to the "weak upper integer" predicate M e. ( ZZ>=N ) . (Contributed by Mario Carneiro, 29-Sep-2015)

Ref Expression
Assertion fzolb
|- ( M e. ( M ..^ N ) <-> ( M e. ZZ /\ N e. ZZ /\ M < N ) )

Proof

Step Hyp Ref Expression
1 elfzo2
 |-  ( M e. ( M ..^ N ) <-> ( M e. ( ZZ>= ` M ) /\ N e. ZZ /\ M < N ) )
2 eluzel2
 |-  ( M e. ( ZZ>= ` M ) -> M e. ZZ )
3 uzid
 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )
4 2 3 impbii
 |-  ( M e. ( ZZ>= ` M ) <-> M e. ZZ )
5 4 3anbi1i
 |-  ( ( M e. ( ZZ>= ` M ) /\ N e. ZZ /\ M < N ) <-> ( M e. ZZ /\ N e. ZZ /\ M < N ) )
6 1 5 bitri
 |-  ( M e. ( M ..^ N ) <-> ( M e. ZZ /\ N e. ZZ /\ M < N ) )