Step |
Hyp |
Ref |
Expression |
1 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
2 |
|
fzn |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N - 1 ) < M <-> ( M ... ( N - 1 ) ) = (/) ) ) |
4 |
|
zlem1lt |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N <_ M <-> ( N - 1 ) < M ) ) |
5 |
4
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( N - 1 ) < M ) ) |
6 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
7 |
6
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
8 |
7
|
eqeq1d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M ..^ N ) = (/) <-> ( M ... ( N - 1 ) ) = (/) ) ) |
9 |
3 5 8
|
3bitr4d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( M ..^ N ) = (/) ) ) |