Metamath Proof Explorer


Theorem fzonlt0

Description: A half-open integer range is empty if the bounds are equal or reversed. (Contributed by AV, 20-Oct-2018)

Ref Expression
Assertion fzonlt0
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. M < N <-> ( M ..^ N ) = (/) ) )

Proof

Step Hyp Ref Expression
1 zre
 |-  ( N e. ZZ -> N e. RR )
2 zre
 |-  ( M e. ZZ -> M e. RR )
3 lenlt
 |-  ( ( N e. RR /\ M e. RR ) -> ( N <_ M <-> -. M < N ) )
4 1 2 3 syl2anr
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> -. M < N ) )
5 fzon
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( M ..^ N ) = (/) ) )
6 4 5 bitr3d
 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -. M < N <-> ( M ..^ N ) = (/) ) )