Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
|- ( A e. ( 0 ..^ N ) <-> ( A e. NN0 /\ N e. NN /\ A < N ) ) |
2 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
3 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
4 |
2 3
|
anim12i |
|- ( ( A e. NN0 /\ N e. NN ) -> ( A e. RR /\ N e. RR ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. NN0 /\ N e. NN /\ A < N ) -> ( A e. RR /\ N e. RR ) ) |
6 |
1 5
|
sylbi |
|- ( A e. ( 0 ..^ N ) -> ( A e. RR /\ N e. RR ) ) |
7 |
|
elfzoelz |
|- ( B e. ( 0 ..^ N ) -> B e. ZZ ) |
8 |
7
|
zred |
|- ( B e. ( 0 ..^ N ) -> B e. RR ) |
9 |
|
simpr |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> B e. RR ) |
10 |
|
simpll |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> A e. RR ) |
11 |
|
resubcl |
|- ( ( N e. RR /\ A e. RR ) -> ( N - A ) e. RR ) |
12 |
11
|
ancoms |
|- ( ( A e. RR /\ N e. RR ) -> ( N - A ) e. RR ) |
13 |
12
|
adantr |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( N - A ) e. RR ) |
14 |
9 10 13
|
ltadd1d |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A <-> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) ) |
15 |
14
|
biimpa |
|- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < ( A + ( N - A ) ) ) |
16 |
|
recn |
|- ( A e. RR -> A e. CC ) |
17 |
|
recn |
|- ( N e. RR -> N e. CC ) |
18 |
16 17
|
anim12i |
|- ( ( A e. RR /\ N e. RR ) -> ( A e. CC /\ N e. CC ) ) |
19 |
18
|
adantr |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( A e. CC /\ N e. CC ) ) |
20 |
19
|
adantr |
|- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A e. CC /\ N e. CC ) ) |
21 |
|
pncan3 |
|- ( ( A e. CC /\ N e. CC ) -> ( A + ( N - A ) ) = N ) |
22 |
20 21
|
syl |
|- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( A + ( N - A ) ) = N ) |
23 |
15 22
|
breqtrd |
|- ( ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |
24 |
23
|
ex |
|- ( ( ( A e. RR /\ N e. RR ) /\ B e. RR ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) |
25 |
6 8 24
|
syl2an |
|- ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) ) -> ( B < A -> ( B + ( N - A ) ) < N ) ) |
26 |
25
|
3impia |
|- ( ( A e. ( 0 ..^ N ) /\ B e. ( 0 ..^ N ) /\ B < A ) -> ( B + ( N - A ) ) < N ) |